EDUSAT LEARNING RESOURCE MATERIAL
On

Software Engineering
(For 5" Semester CSE & IT)

Prepared by

1. Er. Ramesh Chandra Sahoo, Sr.Lect (CSE & IT)
UCP Engg. School, Berhampur

2. Miss Sasmita Panigrahi, PTGF(CSE & IT),
UCP Engg. School, Berhampur

Copy Right DTE&T, Odisha Page 1

Course Contents

Chapter - 1
Introduction to Software Engineering 6-27

1.1 Relevance of software engineering

1.2 Software characteristics and applications

1.3 Emergence of software engineering.

1.4 Early computer programming high level languag@ogramming
control flow based design data flow oriented desista structure
oriented design object and component bases design

1.5 Software life cycle models

1.6 Classical water fall and iterative water fabtiaels

1.7 Prototyping

1.8 Evolutionary model

1.9 Spiral model

Chapter — 2
Understanding Project Management 28-59

2.1 Project management concepts people, produxess and project

2.2 Project management

2.3 Project size estimation metrics line of conffiodDC) and function

point
metric (FP)

2.4 Difference among the project estimation technicgrapirical
estimation techniques, heuristic techniquasalytical estimation
techniques

2.5 COCOMO models, Basic, Intermediate and complete

2.6 Effect of schedule change on lost

2.7 Jensen model for stating level estimation

2.8 Tools for scheduling

2.9 Use of work breakdown structure, activity netwoi&sintt chart and

PERT in scheduling

2.10 Organization structure

2.11 Team structure

2.12 Importance of risk identification risk assessmeart ask

containment with reference to risk mamaget

Copy Right DTE&T, Odisha Page 2

Chapter - 3
Understanding the Need of Requirement Analysis 60-70

3.1 Need for requirement analysis

3.2 Steps in requirement dictation for software niidting the process
facilitated application specific techniquesl quality function
deployment.

3.3 Principles of analysis.

3.4 Software prototyping.

3.5 Prototyping approach.

3.6 Prototyping tools and methods.

3.7 Software requirement specification principle.

3.8 SRS Document.

3.9 Characteristics and organization of SRS doctimen

Chapter - 4
Understanding the Principles and Methods of S\W Degn 71-90

4.1 Importance of S/W Design

4.2 Design principles and Concepts

4.3 Cohesion and coupling

4.4 Classification of cohesiveness

4.5 Classification of coupling

4.6 S/W design approaches

4.7 Structured analysis methodology

4.8 Use of DF diagram

4.9 List the symbols used in DFD

4.10 Construction of DFD

4.11 Limitations of DFD

4.12 Uses of structured of chart and structuredydes
4.13 Principles of transformation of DFD to struetlichart
4.14 Transform analysis and transaction analysis
4.15 Object oriented concepts

4.16 Object oriented and function oriented design

Copy Right DTE&T, Odisha Page 3

Chapter -5

Understanding the Principles of User Interface Degn 91-100

5.1 Rules for UDI

5.2 Interface design model

5.3 UID Process and models

5.4 Interface design activities defining interfaigects, actions and the
design issues.

5.5 Compare the various types of interface

5.6 Main aspects of Graphical Ul, Text based iaizef

Chapter - 6
Understanding the Principles of Software Coding 101-123

6.1 Coding standards and guidelines.

6.2 Code walk through.

6.3 Code inspections and software documentation.

6.4 Distinguish between unit testing integratiostiteg and system testing.

6.5 Unit testing.

6.6 Methods of black box testing.

6.7 Equivalence class partitioning and boundaryeanalysis.

6.8 Methodologies for white box testing.

6.9 Different white box methodologies statementetage branch coverage,
condition coverage, path coverage, data Based testing and mutation
testing.

6.10 Debugging approaches.

6.11 Debugging guidelines.

6.12 Need for integration testing.

6.13 Compare phased and incremental integratidimges

6.14 System testing alphas beta and acceptancetest

6.15 Need for stress testing and error seeding.

6.16 General issues associated with testing.

Copy Right DTE&T, Odisha Page 4

Chapter-7
Understanding the Importance of S/W Reliability 124-134

7.1 Importance of software reliability

7.2 Distinguish between the different reliabilitgtrics.

7.3 Reliability growth modeling.

7.4 Characteristics of quality software.

7.5 Evolution of software quality managemasgstem.

7.6 Importance, requirement and procedure to gaim 9000 certification for
software industry.

7.7 SEI capability maturity model.

7.8 Compare between ISO 9000 certification

Chapter-8

Understanding the Computer Aided Software Enginedng
(CASE) 135-143

8.1 Briefly explain CASE benefits of CASE.

8.2 Briefly explain the building blocks for CASE
8.3 CASE support in software life cycle

8.4 List the different CASE tools.

Model Question for Software Engineering 144-147

Copy Right DTE&T, Odisha Page 5

Chapter - 1
| ntroduction to Software Engineering
Contents

1.1 Relevance of software engineering

1.2 Software characteristics and applications

1.3 Emergence of software engineering.

1.4 Early computer programming high level languggegramming
control flow based design data flow oriendledign data structure
oriented design object and component bassgrie

1.5 Software life cycle models

1.6 Classical water fall and iterative water fatiaels

1.7 Prototyping

1.8 Evolutionary model

1.9 Spiral model

1.1 Relevance of Software Engineering

Software engineering is the field of computer sceethat deals with the
building of software systems which are so largesmcomplex that they are

build by a team or teams of engineers.

Parnas has defined software engineering as “mefsgn construction of

multi-version software”.

According to Fritz Bauer, software engineeringifié establishment and use
of sound engineering principles in order to ob&sonomically software that

Is reliable and works efficiently on real machines”

Stephen Schach defined as “ A discipline whose iaithe production of
guality software, software that is delivered ondjmwvithin budget, and that
satisfies itgequirements”.

Software has become critical to advancement in siirah areas of human

endeavour. The art of programming only is no lorgéficient to construct

Copy Right DTE&T, Odisha Page 6

large programs. There are serious problems in tost, ctimeliness,

maintenance and quality of many software products.

The foundation for software engineering lies in go®d working knowledge
of computer science theory and practice. The tlieatdoackground involves
knowing how and when to use data structures, dlgus and understanding
what problems can be solved and what cannot. Thetipal knowledge
includes through understanding of the workingsha hardware as well as

thorough knowledge of the available programmingylages and tools.

Software engineering has the objective of solvilgsé problems by
producing good quality, maintainable software, wnet within budget. To
achieve this objective, we have to focus in a giseéd manner on both the

guality of the product and on the process useceweldp the product.

1.2 Software Characteristics and Applications

Software is a logical rather than a physical sysééament. Its characteristics
that make it different from other things human lpdauild.

» Software is developed or engineered, it is not rfaotured in the
classical sense which has quality problem.

» Software does not “wear out”, but it deterioratas tb change.

e Although the industry is moving toward componensdzh
construction, most software continues to be cudtaitt- Modern
reusable components encapsulate data and procassingoftware
parts to be reused by different programs. E.g.lgcap user interface,
window, pull-down menus in library etc.

Software Applications

Software may be applied in any situation for whlpre-specified set of

procedural steps has been defined. Informationecdrdand determinacy are

Copy Right DTE&T, Odisha Page 7

import factors in determining the nature of a saftvapplication. Contents

refer to the meaning and form of incoming and oungoinformation.

Applications are:

System software: System software is a collectioprofjrams written
to service other programs. Examples of system soéware compilers,
editors, file management utilities, operating syst€omponents,
drivers.

Application software: Stand-alone programs for gpeneeds.
Engineering / scientific software: Characterized Byumber
crunching” algorithms. Such as automotive stressyars, molecular
biology, orbital dynamics etc.

Embedded software resides within a product or gyste

Product-line software focus on a limited marketplée address mass
consumer market.

Web based software, the web pages retrieved byowskr are
software that incorporates executable instructans data. As web 2.0
emerges, more sophisticated computing environmentsupported
integrated with remote database and business apphs.

Al software uses non-numerical algorithm to soleenplex problem.

Examples are Robotics, expert system, pattern raioog, game

playing.

1.3 Emergence of Software Engineering

Software engineering techniques have evolved ovanymyears which

resulted series of innovations and accumulatioexplerience about writing

good quality programs. Innovations and programmaxgeriences which

have contributed to the development of softwareire@ging are briefly

describe in Article 1.4.

Copy Right DTE&T, Odisha Page 8

1.4 Early Computer Programming, High Level Language
Programming, Control Flow Based Design, Data Flow @ented

Design, Data Structure Oriented Design, Object and
Component Bases Design

Early Computer Programming

Early commercial computers were very slow as coegbéo today's standard
computers. Even simple processing tasks took morepatation time on
those computers. No wonder that programs at timet viery small in size and
lacked sophistication. Those programs were usualigten in assembly
languages. Program lengths were typically limiedlout a few hundreds of
lines of monolithic assembly code. Every programmeting the programs

In his own style.

High-Level Language Programming

Computers become faster with the introduction o themiconductor
technology. With the availability of more powerfobmputers, it became
possible to solve larger and more complex probleigh Level languages
such as FORTRAN, ALGOL and COBOL were introducedhisT
considerably reduced the effort required to devedofiware products and
helped programmers to write larger programs. Howevtke software
development style was limited to sizes of arourfevathousands of lines of

source code.

Control Flow-Based Design

Programmers found it increasingly difficult not prib write cost effective
and correct programs, but also to understand andtama programs written
by others. Thus particular attention is paid to tesign of a program’s

control flow structure.

Copy Right DTE&T, Odisha Page 9

A program's control flow structure indicates thejussnce in which the

programs instructions are executed.

Data Structure-Oriented Design

Software engineers were now expected to develgeilanore complicated
software products which often required writing ixcess of several tens of
thousands of lines of source code. The control d@sed programs
development techniques could not be satisfactargdgd to handle these
problems and therefore more effective program agreént techniques were
needed. Using data structure-oriented design tqabksj first a program's
data structures are designed. In the next stegrthgram design is derived

from the data structure.

Object-Oriented Design

An object-Oriented design technique is an intullivappealing approach,
where the natural objects occurring in a probleenfast identified and then
the relationships the objects such as compositefeyence, and inheritance
are determined. Each object essentially acts asata Hdiding or data
abstraction entry. Object-oriented techniques hgai@ed wide acceptance
because of their simplicity, code and design ressgpe they offer and
promise of lower development time, lower developmerst more robust

code and easier maintenance.

1.5 Software Life Cycle Models

The goal of software engineering is to provide n®aad processes that lead
to the production of well-documented maintainaloiiéveare.

A life cycle model prescribes the different aciegt that need to be carried

Copy Right DTE&T, Odisha Page 10

out to develop a software product and the sequgrafithese activities.
A software life cycle is the series of identifiabstages that a software
product undergoes during its lifetime. It also caps the order in which
these activities are to be undertaken.
A software life cycle model is a descriptive andgtammatic representation
of the software life cycle.
The various phases of software life cycle or SofewBevelopment Life
Cycle (SDLC) are:

¢ Preliminary Investigation

s Software Analysis

+ Software Design

s Software Testing

% Software Maintenance

A software life cycle model is referred to as s@fitevprocess model.

1.6 Classical Waterfall Model and Iterative Waterfdl Model

This model is called as linear sequentredel. This model suggests a

systematic approach to software development.

The project development is divided into sequenceaf-defined phases. It
can be applied for long-term project and well ust®yd product
requirement.
The classical waterfall model breaks down thedifele into an intuitive set
of phases. Different phases of this model are:

* Feasibility study

* Requirements analysis and specification

* Design

» Coding and unit testing

Copy Right DTE&T, Odisha Page 11

* Integration and system testing

 Maintenance

Feasibility
Study
4
Requirement
Analysis and
Specification

A 4

Design
A 4
Coding and
Unit Testing
v
Integration
and System
Testing
4

Maintenance

Fig. 1.1 Classical Waterfall Model

The phases starting from the feasibility studyhe integration and system
testing phases are known as the development phalédisese activities are
performed in a set of sequence without skip oraepdone of the activities

can be revised once closed and the results aregasthe next step for use.

Feasibility Study

The main of the feasibility study is to determindnether it would be

financially, technically and operationally feasitdéedevelop the product. The
feasibility study activity involves the analysis thle problem and collection
of all relevant information relating to the prodwstich as the different data

items which would be input to the system, the pset®y required to be

Copy Right DTE&T, Odisha Page 12

carried out on these data, the output data requoede produced by the

system.

Technical Feasibility

Can the work for the project be done with curregquipment, existing

software technology and available personnel?

Economic Feasibility

Are there sufficient benefits in creating the sgstéo make the costs

acceptable?

Operational Feasibility

Will the system be used if it is developed and enpknted?

These phases capture the important requirementtheofcustomer, also
formulate all the different ways in which the pretnl can be solved are
identified.

Requirement Analysis and Specifications

The goal of this phase is to understand the exagtirements of the
customer regarding the product to be developed tandocument them
properly.
This phase consists of two distinct activities:

» Requirements gathering and analysis.

* Requirements specification.

Requirements Gathering and Analysis

This activity consists of first gathering the regments and then analyzing

Copy Right DTE&T, Odisha Page 13

the gathered requirements.

The goal of the requirements gathering activitytascollect all relevant
information regarding the product to be developednfthe customer with a
view to clearly understand the customer requirement

Once the requirements have been gathered, thesaabtivity is taken up.

Requirements Specification

The customer requirements identified during theuregnent gathering and
analysis activity are organized into a softwareumnegment specification
(SRS) document. The requirements describe the "wdfad system, not the
“how”. This document written in a natural languagmtains a description of
what the system will do without describing how itlve done. The most
important contents of this document are the fumetioequirements, the non-
functional requirements and the goal of implemeoatEach function can
be characterized by the input data, the processiggired on the input data
and the output data to be produced. The non-fumeticequirements identify
the performance requirements, the required stasdartie followed etc. The
SRS document may act as a contract between thdogewent team and

customer.

Design

The goal of this phase is to transform the requems specified in the SRS
document into a structure that is suitable for mEnpéntation in some
programming language. Two distinctly different dgsapproaches are being
used at present. These are:

» Traditional design approach

* Object-oriented design approach

Copy Right DTE&T, Odisha Page 14

Traditional Design Approach

The traditional design technique is based on #ta flow oriented design
approach.

The design phase consists of two activities: farstructured analysis of the
requirements specification is carried out, secdnactired design activity.
Structured analysis involves preparing a detailedlysis of the different
functions to be supported by the system and ideatibn of the data flow
among the functions. Structured design consistdwaf main activities:
architectural design (also called high level desmymd detailed design (also
called low level design).

High level design involves decomposing the systemo i modules,
representing the interfaces and the invocationtioglships among the
modules. Detailed design deals with data structares algorithm of the
modules.

Object-Oriented Design Approach

In this technique various objects that occur in pih@blem domain and the
solution domain are identified and the differeatienships that exist among

these objects are identified.

Coding and Unit Testing

The purpose of the coding and unit testing phassftivare development is
to translate the software design into source c@ueing testing the major
activities are centred on the examination and natibn of the code.
Initially small units are tested in isolation framst of the software product.
Unit testing also involves a precise definitiortloé test cases, testing criteria

and management of test cases.

Copy Right DTE&T, Odisha Page 15

Integration and System Testing

During the integration and system testing phasedifferent modules are
integrated in a planned manner. Integration ofotesimodules are normally
carried out incrementally over a number of ste@3uring each integration
step previously planned modules are added to ttimlbaintegration system
and the resultant system is tested. Finally, a#t#rthe modules have

been successfully integrated and tested systemgdastcarried out.

The goal of system testing is to ensure that tiveldped system confirms to
its requirements laid out in the SRS document. éystesting usually
consists of three different kinds of testing atiéa:
o -—testing: a testing is the system testing performed by the
development team.
» [—testing:This is the system testing performed by a friergly of
customers.

» Acceptance testingThis is the system testing performed by the

customer himself after the product delivery to deiae whether to

accept the delivered product or to reject it.

System testing is normally carried out in a plannghner according to a
system test plan document. The results of informnaéind system testing are

documented in the form of a test report.

Maintenance

Software maintenance is a very broad activity theludes error correction,
enhancement of capabilities and optimization. Ting@se of this phase is to
preserve the value of the software over time. Maahce involves

performing the following activities:

Copy Right DTE&T, Odisha Page 16

» Corrective Maintenance
This type of maintenance involves correctemgor that were not
discovered during the product developméiaisp.
» Perfective Maintenance
This type of maintenance involves improving the lenpentation of
the system and enhancing the functionaldfdbe system according
to the customer’s requirements.
* Adaptive Maintenance
Adaptive maintenance is usually required for rapgrtthe softer to

work in a new environment.

Iterative Waterfall Model

The classical waterfall model is an idealistic mmnece it assumes that no
development error is ever committed by the engséering any of the life
cycle phases. However in practical developmentrenwent, the engineers
do commit a large number of errors in different ggsaof the life cycle. The
source of the defects can be wrong assumptions,otise appropriate
technology, communication gap among the projectelbgers etc. These
defects usually get detected much later in thedyiele. Suppose a defect is
detected at testing phase the engineers needldaajao the phase where the
defect had occurred and correct the work done dutiat phase and the
subsequent phases to correct the defect and ést effi the later phases.

In any practical software development work it ist possible to strictly
follow the classical waterfall model.

Feedback paths are needed in the classical watexdalel from every phase

to its preceding phases.

Copy Right DTE&T, Odisha Page 17

Feasibility

Study
A \ 4
Requirement analysis
and specification
A \4
Design
A A 4
Coding and
unit testing
A A 4
Integration and
system testing
7'y A 4
Maintenance
A
s v \4 A 4

Fig. 1.2 Iterative waterfall Model

It may not always be possible to detect all emahe same phase in which
they occur. The feedback paths allow for correcbbithe errors committed
during a phase, as and when these are detectddrilfg testing a design
error is identified then the feedback path allols design to reworked and
the changes to be reflected in the design documelatiwever observe that
there is no feedback path to the feasibility stagleis means that the
feasibility study error can not be corrected.

Though errors are inevitable in almost every phaselevelopment, it is
desirable to detect these errors in the same phashich they occur. This
can reduce the effort required for correcting budee principle of detecting
errors as close to there points of introductiorpassible is known as phase

containment of errors. This is an important sofevangineering principle.

Copy Right DTE&T, Odisha Page 18

1.7 Prototyping Model

Prototyping is an attractive idea for complicated targe systems for which
there is no manual process or existing system tp te determine the

requirements.

The main principle of prototyping model is that fheject is built quickly to
demonstrate the customer who can give more inputs feedback. This
model will be chosen
» When the customer defines a set of general obgsctor software but
does not provide detailed input, processing or wutgquirements.
» Developer is unsure about the efficiency of aroadlgm or the new
technology is applied.

A prototype usually exhibits limited functional cdplities, low reliability
and inefficient performance compared to the actadiware. A developed
prototype can help engineers to critically examihe technical issues

associated with product development.

Copy Right DTE&T, Odisha Page 19

Requirements
gathering

y
Quick
design

Refine
requirements
incorporating
customer
suaaestion:

\ Customer evaluation

of prototype

A 4

Desiar
A

\ 4

Build
Prototype

Implement

A 4

Fig. 1.3 Prototyping Model of Software Developmer

Maintain

The development of the prototype starts when tle#minary version of the

requirements specification document has been desdloA quick design is

carried out and the prototype is built. The devetbprototype is submitted

to the customer for his evaluation. Based on theee&nce, they provide

Copy Right DTE&T, Odisha

Page 20

feedback to the developers regarding the prototyg®at is correct, what

needs to be modified, what is missing, what ismesded etc. Based on the
customer feedback the prototype is modified anad ttkee users and the
clients are again allowed to use the system. Tyukeof obtaining customer

feedback and modifying the prototype continuesthi# customer approves
the prototype.

After the finalization of software requirement arsgpecification (SRS)
document, the prototype is discarded and actuaksyss then developed

using the iterative waterfall approach.

Prototyping is often not used, because that dewatop costs may become
large. However in some situations, the cost ofvgfeé development without
prototyping may be more than with prototyping. tBtgpe model is well

suited for projects where requirements are hardei@rmine. This model
requires extensive participation and involvementh& customer, which is

not always possible.

1.8 Evolutionary Model

This life cycle model is also referred as the ssste@ versions model and
the incremental model. In this life cycle model gaftware is first broken
down into several modules or functional units whaan be incrementally

constructed and delivered.

Copy Right DTE&T, Odisha Page 21

Fig. 1.4 Evolutionary model of swdire development

A, B, C are modules of a software product thatiaceementally developed
and delivered.

The development team first develops the core madefieghe system. That is
basic requirements are addressed but many suppimydeatures remain
undelivered. The initial product is refined intaiaasing levels of capability
by adding new functionalities in successive versiokach evolutionary
version may be developed using an interactive vatemodel of
development.

Copy Right DTE&T, Odisha Page 22

Rough requirements specification

A 4

Identify the core and other parts to be
developed incrementally

A 4

Develop the core part using an iterative
waterfall model

v

Collect customer feedback and modifj
requirements

A 4

Develop the next identified features
using an iterative waterfall model

A

Maintenance

Fig. 1.5 Evolutionary Model of Software Developrhe

Each successive version of the product is fullycfioming software capable
of performing more useful work than the previoussian. In this model the
user gets a chance to experiment with partiallyettgped software much
before the complete version of the system is rebkkasiherefore the
evolutionary model helps to accurately elicit usequirements during the

delivery of the different versions of the softwaaed the change requests

Copy Right DTE&T, Odisha Page 23

after delivery of the complete software are minoiz

The evolutionary model is used when the customefeps to receive the
products in increments rather than waiting for il product to be
developed and delivered. The evolutionary modefery popular for object

oriented software development project.

The main disadvantage of the successive versiordeims that for most
practical problems it is difficult to divide thegilem into several functional
units which can be incrementally implemented andiveleed. The

evolutionary model is normally useful for only vdayge products.

1.9 Spiral Model

The spiral model also known as the spiral life eyohodel is a systems
development life cycle model used in informatiocht@ology. This model of
development combines the features of the protogypnodel, the waterfall
model and other models. The diagrammatic representaf this model

appears like a spiral with many loops.

Copy Right DTE&T, Odisha Page 24

solutions

1.ldetermine objectives
and identify alternative

2. ldentify and
resolve risks

N

4. Review and
plan for next
phase

%

3. Develop
next level of
the product

Fig. 1.6 Spiral Model of Software Development

Exact number of phases through which the produadergeloped in this

model is not fixed. The number of phases variesifome project to another.

Each phase in this model is split into four sectwrquadrants:

Planning: Identifies the objectives of the phase and therradtere

solutions possible for the phase and constraints.

Risk analysis: Analyze alternatives and attempts to identify and

resolve the risks involved.

Copy Right DTE&T, Odisha

Page 25

* Development:Product development and testing product.

* AssessmentCustomer evaluation.

During the first phase planning is performed, risks analyzed, prototypes
are built and customers evaluate the prototypeinQuhe second phase a
second prototype is evolved by a fourfold proced@ealuating the first
prototype in terms of its strengths, weaknesses ik, defining the
requirements of the second prototype, construcéing testing the second
prototype. The existing prototype is evaluatechim $ame manner as was the
previous prototype and if necessary another prpeotyg developed. After
several iterations along the spiral, all risks @solved and the software is
ready for development. At this point, a waterfatiodel of software

development is adopted.

The radius of the spiral at any point represergsctist incurred in the project
till then and the angular dimension represents dlegress, made in the

current phase.

In the spiral model of development, the projectrteaust decide how exactly
to structure the project into phases. The mostndigishing feature of this
model is its ability to handle risks. The spiral debuses prototyping as a
risk reduction mechanism and also retains the syaie step-wise approach

of the waterfall model.

Spiral Model Strengths

L)

% Provides early indication of risks, without muclsto

R/
0‘0

Critical high-risk functions are developed first.

*

L)

*

Early and frequent feedback from users.

)

+ Cumulative costs assessed frequently.

Copy Right DTE&T, Odisha Page 26

Spiral Model Weaknesses

% The model is complex.
+ Risk assessment expertise is required.
L)

% May be hard to define objectives.

s Spiral may continue indefinitely.

*

* Time spent planning, resetting objectives, doingk ranalysis and

prototyping may be excessive.

Copy Right DTE&T, Odisha Page 27

Chapter - 2
Understanding Project Management

Contents

2.1 Project management concepts people, produxess and project

2.2 Project management

2.3 Project size estimation metrics, line of conftdOC) and function
point
metric (FP)

2.4 Difference between the project estimation techesq@empirical
estimation techniques, heuristic techniques, aialytestimation
techniques

2.5 COCOMO models, Basic, Intermediate and complete

2.6 Effect of schedule change on lost

2.7 Jensen model for stating level estimation

2.8 Tools for scheduling

2.9 Use of work breakdown structure, activity netwoi&antt chart and
PERT in scheduling

2.10 Organization structure

2.11 Team structure

2.12 Importance of risk identification risksassment and risk

containment with reference to risknagement

2.1 Project Management Concepts

The main goal of software project management i€rable a group of
software engineers to work efficiently towards ssstul completion of the
project. The management of software developmendejgendent on four
factors:

* The People

* The Product

» The Process

* The Project

Copy Right DTE&T, Odisha Page 28

People

Dependency

Project order

Product

Process

Fig. 2.1 Factors of Management Dependency

Effective software project management focuses esdlitems in this order:
0 The people
» Deals with the cultivation of motivated, highlyil&d people.
» Consists of the stack holders, the team leadedsthemsoftware
team.
0 The Product
* Product objectives and scope should be establiseénle a
project can be planned.
o The Process
 The software process provides the framework fromclwia
comprehensive plan for software development caeshablished.
o0 The Project
 Planning and controlling a software project is ddoe one
primary reason, it is the only known way to manegeplexity.
* In a 1998 survey, 26% of software projects fabedright, 46%

experienced cost and schedule overruns.

Copy Right DTE&T, Odisha Page 29

2.2 Project Management

There are many software engineers involved in tegeldpment of a

software product. The primary job of the projecthager is to ensure that the

project is completed within budget and on schedule.

Job Responsibilities of a Software Project Manager

Software managers are responsible for planningsahdduling project
development. Manager must decide what objectivescabe achieved,
what resources are required to achieve the obgs;tivow and when
the resources are to be acquired and how the goale be achieved.
Software managers takes responsibility for promciposal writing,
project cost estimation, project staffing, projectonitoring and
control, software configuration management, risk nagement,
interfacing with clients, managerial report writiagd presentation.
Software managers monitor progress to check tleatdévelopment is
on time and within budget.

Skills Necessary for Software Project Management

Good qualitative judgment and decision-making cdpiais

Good knowledge of latest software project
management techniques such as cost estimation,m&kagement,
configuration management.

Good communication skill and previous experience managing

similar projects.

Copy Right DTE&T, Odisha Page 30

Project Planning

Software managers are responsible for planning seiteduling project
development. They monitor progress to check thatdavelopment is on
time and within budget. The first component of w@ifte engineering project
management is effective planning of the developroéttie software. Project
planning consists of the following activities:
» Estimate the size of the project.
» Estimate the cost and duration of the project. Castl duration
estimation is usually based on the size of theggtoj
» Estimate how much effort would be required?
» Staff organization and staffing plans.
» Scheduling man power and other resources.
» The amount of computing resources (e.g. workstatigmersonal
computers and database software). Resource re@ntemare
estimated on the basis of cost and development time

» Risk identification, analysis.

Effort »| Cost
Estimation Estimation
Size
Estimatior \
Duration _| Project | Scheduling
Estimation Staffing g

Fig. 2.2 Precedence Ordering among Planning Asrit

Size estimation is the first activity. The sizetihe key parameter for the
estimation of other activities. Other componentspobject planning are

estimation of effort, cost, resources and projecation.

Copy Right DTE&T, Odisha Page 31

Sliding Window Technique

In this technique starting with an initial plangetiproject is planned more
accurately in successive development stages. Adtreof a project, project
manager have incomplete knowledge about the detéithe project. The
information gradually improves as the project pesgr through different
phases. After the completion of every phase, tlogept manager can plan
each subsequent phase more accurately and witleasiog levels of

confidence.

2.3 Project Size Estimation Metrics, Line Of Contol (LOC)
and Function Point Metric (FP)

The size of a project is obviously not the numbkbytes that the source
code occupies. The project size is a measure opribielem complexity
in terms of the effort and time required to develog product.
Two metrics are widely used to estimate size:

* Lines of Code (LOC)

* Function Point (FP)

Lines Of Code (LOC)

LOC can be defined as the number of delivered lmfesode in software

excluding the comments and blank lines. LOC depemdthe programming

language chosen for the project. The exact numbéreolines of code can
only be determined after the project is completeesiless information about
the project is available at the early stage of tgraent.

In order to estimate the LOC count at the beginroh@ project, project

managers usually divide the problem into moduleseacth modules into sub
modules and a so on until the sizes of the diffeleaf level modules can be

approximately predicted.

Copy Right DTE&T, Odisha Page 32

Disadvantages:

LOC is language dependent. A line of assembleptstiee same as a
line of COBOL.

LOC measure correlates poorly with the quality affectiency of the
code. A larger code size does not necessary imglebquality or
higher efficiency.

LOC metrics penalizes use of higher level prograngmianguages,
code reuse etc.

It is very difficult to accurately estimate LOC time final product from
the problem specification. The LOC count can baieately computed

only after the code has been fully developed.

Function Point Metric

¢

Function Points measure software size by quangfyire functionality
provided to the user based solely on logical desigd functional
specifications

Function point analysis is a method of quantifyitige size and
complexity of a software system in terms of thections that the
system delivers to the user

It is independent of the computer language, deveés methodology,
technology or capability of the project team useddevelop the
application.

Function point analysis is designed to measurenegsi applications
(not scientific applications) .

Function points are independent of the languagels.to or

methodologies used for implementation

Function points can be estimated early in anabsédesign

Since function points are based on the systemsusaternal view of

Copy Right DTE&T, Odisha Page 33

the system, non-technical users of the softwaréesyhave a better

understanding of what function points are measuring

Objectives of Function Point Counting

¢ Measure functionality that the user requests aoéives

¢ Measure software development and maintenance indepdy of
technology used for implementation

Steps of Function Point Counting

Determine the type of function point count

Identify the counting scope and application boupdar

Determine the Unadjusted Function Point Count

Count Data Functions

Count Transactional Functions

* & & o oo o

Determine the Value Adjustment Factor

¢ Calculate the Adjusted Function Point Count

Function point metric estimates the size of a saferproduct directly from

the problem specification.

The different parameters are:

Number Of Inputs:

Each data item input by the user is counted.

Number Of Outputs:

The outputs refers to reports printed, screen asitperror messages
produced etc.

Number Of Inquiries:

It is the number of distinct interactive queriesiethcan be made by the
users.

Number Of Files:

Each logical file is counted. A logical file meagsoups of logically

related data. Thus logical files can be data strestor physical files.

Copy Right DTE&T, Odisha Page 34

Number Of Interfaces:

Here the interfaces which are used to exchangenmadton with other

systems. Examples of interfaces are data files apes; disks,

communication links with other systems etc.

Function Point (FP) is estimated using thenida:

FP = UFP (Unadjusted Function Point) * TCF dfi@cal Complexity

Factor)

UFP = (Number of inputs) * 4 + (Number of puts) * 5 + (Number of
inquiries) * 4 + (Number of file§)L0 + Number of interfaces) * 10

TCF = DI (Degree of Influence) * 0.01

The unadjusted function point count (UFP) reflebts specific countable

functionality provided to the user by the projecapplication.

Example- Once the unadjusted function point (UFP) is coraguthe

technical complexity factor (TCF) is computed néitte TCF refines the

UFP measure by considering fourteen other factarsh sas high

transaction rates, throughput and response timaéreggents etc. Each of

these 14 factors is assigned a value from O (restgmt or no influence) to

6 (strong influence). The resulting numbers arersed) yielding the total

degree of influence (DI). Now, the TCF is compuésd(0.65+0.01*Dl).

As DI can vary from 0O to 70, the TCF can vary frOré5 to 1.35.

Finally FP = UFP *TCF

Feature Point Metric

Feature point metric incorporates an extra parameteto algorithm

complexity. This parameter ensures that the conapsitae using the feature

point metric reflects the fact that the more ¢benplexity of a function, the

greater the effort required to develop it and tfeeeeits size should be larger

compared to simpler functions

Copy Right DTE&T, Odisha Page 35

Project Estimation Techniques

The estimation of various project parameters isaaidproject planning
activity. The project parameters that are estimateldide:
* Project size(i.e. size estimation)
* Project duration
» Effort required to develop the software
There are three broad categories of estimatidmtques:
» Empirical estimation techniques
» Heuristic techniques

» Analytical estimation techniques

Empirical Estimation Techniques

Empirical estimation techniques are based on makimgducated guess of
the project parameters. While using this techniguier experience with the

development of similar products is useful.

Heuristic Techniques

Heuristic techniques assume that the relationsimpeng the different project
parameters can be modelled using suitable matheshaxpressions. Once
the basic (independent) parameters are known, ther o({dependent)
parameters can be easily determined by substitutiagvalue of the basic
parameters in the mathematical expression. Diftereruristic estimation
models can be divided into two categories:

» Single variable model

» Multivariable model
A single variable estimation model takes the fwittg form:

Estimated parameter;*&'

Where e is a characteristics of the softway@ntl d1 are constants.

Copy Right DTE&T, Odisha Page 36

A multivariable cost estimation model takes théof@ing form:
Estimated Resource &, + 6, * %2 +
Where g, & ...are the basic characteristics of the software.

C1, &, d1, d2 ...are constants.

Analytical Estimation Techniques

Analytical estimation techniques derive the redliiresults starting with
certain basic assumptions regarding the projeas Tthnique does have a
scientific basis.

Halstead’'s Software Science an Analytical Estimatio Techniques

Halstead’'s software science is an analytical tegplito measure size,
development effort, and development cost of so#waroducts. Halstead
used a few primitive program parameters to devéhepexpressions for the
overall program length, potential minimum volumangdguage level, and
development time.
For a given program, let:

¢ 1, be the number of unique operators used in theranog

¢ 1 be the number of unique operands used in the @nogr

¢ N; be the total number of operators used in the pragr

¢ N, be the total number of operands used in the pnogra
There is no general agreement among researchenshah is the most
meaningful way to define the operators and operafals different
programming languages.
For instance, assignment, arithmetic, and logicpérators are usually
counted as operators. A pair of parentheses, asaseh block begin and
block end pair, are considered as single operators.
The constructs if......then....... else.....endifid & while......do are treated as

single operators. A sequence operator ‘;’ is tikakea single operator.

Copy Right DTE&T, Odisha Page 37

Operators and Operands for the ANSI C Language

The following is a suggested list of operatorstf@ ANSI C language:
({.,> *+-~1++--* /% +-<<>><>=>= === & | && \\ = *=

/= %= -= <<= >>= &= "= \=: ? {; CASE DEFAULT IF ESE SWITCH
WHILE DO FOR GOTO CONTINUE BREAK RETURN and a furart
name in a function call.

Length and Vocabulary

The length of a program as defined by Halsteadntfies the total usage of
all operations and operands in the program. Trumgith N = N + N,

The program vocabulary is the number of unique atpes and operands
used in the program. Thus, program vocabulgsyh; + 1,

Program Volume

The length of a program depends on the choiceeobfierators and operands
used.

V=N logn

The program volume V is the minimum number of bikeded to encode the
program. In fact, to represendifferent identifiers uniquely, we need at least
log, n bits. We need N lggn bits to store a program of length N. Therefore,
the volume V represents the size of the program approximately
compensating for the effect of the programming leagge used.

Effort and Time

The effort required to develop a program can beaiobt by dividing the
program volume by the level of the programming lsage used to develop
the code. Thus, effort E = V / L, where E is themier of mental
discriminations required to implement the programd aalso the effort

required to read and understand the program.

Copy Right DTE&T, Odisha Page 38

Actual Length Estimation
Even though the length of a program can be founadigulation the total

number of operators and operands in a program.

N=n; log; N1 + 2 0% 12

Empirical Estimation Techniques

Cost estimation is a part of the planning stagarof engineering activity.
For any new software project, it is necessary tovkinow much it will cost
to develop and how much development time it wiketaCost in a project is
due to the requirements for software, hardware hothan resources.
Hardware resources such as computer time, terntimd and memory
required for the project, software resources ingltlte tools and compilers

needed during development.

Cost estimates can be made either top-down or roaff@ Top-down

estimation first focuses on system level costs sashthe computing
resources and personal required to develop themmysquality assurance,
system integration, training. Bottom-up cost estioma first estimates the
cost to develop each module or subsystem. Thosis ews combined to
arrive at an overall estimate. Two popular empirgestimation techniques

are:

s Expert Judgment Technique

The most widely used cost estimation techniquéhes expert judgment,
which is an inherently top-down estimation techmeigin this approach an
expert makes an educated guess of the problemasiee analyzing the
problem thoroughly. The expert estimates the cbgtedifferent modules or

subsystems and then combines them to arrive atottezall estimate.

Copy Right DTE&T, Odisha Page 39

However, this technique is subject to human eram individual bias. An
expert making an estimate may not have experiendekaowledge of all
aspects of a project. The advantage of expert jedd¢ms the estimation made
by a group of experts. Estimation by a group ofeztgominimizes factors

such as lack of familiarity with a particular aspefta project, personal bias.

¢ Delphi Cost Estimation

Delphi cost estimation approach tries to overcoamesof the short comings
of the expert judgment approach. Delphi estimatsooarried out by a team
consisting of a group of experts and a coordindtbe Delphi technique can
be adapted to software cost estimation in theietlg manner:
* A coordinator provides each estimator with thegafe requirement
specification (SRS) document and a form for recmgdi cost estimate.
 Estimators study the definition and complete thestimates
anonymously and submit it to the coordinator. They ask questions
to the coordinator, but they do not discuss thetimeates with one
another.
» The coordinator prepares and distributes a sumiatlye estimator’s
responses and includes any unusual rationales byttt estimators.
* Based on this summary, the estimators re-estimidies process is
iterated for several rounds. No group discussiaall@ved during the

entire process.

2.5 COCOMO: A Heuristic Estimation Technique

COCOMO was proposed by Boehm. Boehm postulated ahgtsoftware
development project can be classified into one lod following three
categories based on the development complexityamegsemidetached, and
embedded.

Copy Right DTE&T, Odisha Page 40

* Organic: In the organic mode the project deals with develpma
well-understood application program. The size dof thevelopment
team is reasonably small, and the team membergxrerienced in
developing similar types of projects.

 Semidetached: In the semidetached mode the development team
consists of a mixture of experienced and inexpegdnstaff. Team
members may have limited experience on relatecesysbut may be
unfamiliar with some aspects of the system beingldped.

« Embedded: In the embedded mode of software development, the
project has tight constraints, which might be edato the target
processor and its interface with the associatedvere.

According to Boehm, software cost estimation shdadddone through three
stages: basic COCOMO, intermediate COCOMO, and temgOCOMO.

Basic COCOMO

The basic COCOMO model gives an approximate estinoétthe project
parameters. The basic COCOMO estimation modeblisngby the following
expressions:

Effort = ax (KLOC)* PM

Tdev = h x (Effort)*®> Months
Where
(i) KLOC is the estimated size of the software prodexqiressed in Kilo

Lines of Code,

(il) a1, &, by b, are constants for each category of software ptsgduc
(i) Tdev is the estimated time to develop thetwafe, expressed in months,
(iv) Effort is the total effort required to develajhe software product,

expressed in person months (PMs).

Copy Right DTE&T, Odisha Page 41

Intermediate COCOMO

The basic COCOMO model allowed for a quick and roegtimate, but it
resulted in a lack of accuracy. Basic model prowvisiagle-variable (software
size) static estimation based on the type of tHisvace. A host of the other
project parameters besides the product size affexteffort required to

develop the product as well as the development time

Intermediate COCOMO provides subjective estimatioased on the size of
the software and a set of other parameters knoweosss directives. This
model makes computations on the basis of 15 caserdrbased on the
various attributes of software development. Costetis are used to adjust
the nominal cost of a project to the actual projenwironment, hence
increasing the accuracy of the estimate.
The cost drivers are grouped into four categories:

* Product attributes

» Computer attributes

* Personnel attributes

* Development environment
Product
The characteristics of the product data considenetude the inherent
complexity of the product, reliability requiremerds the product, database
size etc.
Computer
The characteristics of the computer that are censdlinclude the execution
speed required, storage space required etc.
Personnel
The attributes of development personnel that aresidered include the

experience level of personnel, programming caggpdnalysis capabilitgtc.

Copy Right DTE&T, Odisha Page 42

Development Environment
The development environment attributes capturedeneelopment facilities

available to the developers.

Complete COCOMO / Detailed COCOMO

Basic and intermediate COCOMO model considers avaoé product as a
single homogeneous entity. Most large system akerag of several smaller
subsystem. These subsystems may have widely differkaracteristics.

Some subsystem may be considered organic type, sothedded and some
semidetached. Software development is executedifiaraht phases and
hence the estimation of efforts and schedule ateleés should be carried
out phase wise. Detailed COCOMO provides estimatease-wise efforts

and duration of phase of development.

Detailled COCOMO classifies the organic, semidetdclend embedded
project further into small, intermediate, mediund darge-size projects based
on the size of the software measured in KLOC. Basethis classification,
the percentage of efforts and schedule have bésratdd for different phase
of the project, viz. software planning, requiremeanalysis, system
designing, detailed designing, coding, unit testimgegration and system
testing. Total effort is estimated separately. Bpproach reduces the margin

of error in the final estimate.

2.6 Effect of Schedule Change on Cost
Only few number of engineers are needed at thenhay of the project to
carry out planning and specification tasks. Aspghgect progress and more

detailed work is required, the number of engineeashes a peak.

Copy Right DTE&T, Odisha Page 43

By using the Putnam’s proposed expression for L,

K= (C)/(C)° (ta)*
Or
K=C/@®* (Since C= (L) /(G)?) is a constant)
« Where K is the total effort expended (in PM) in tipeoduct
development and L is the product size in KLOC.
* tyis the time required to develop the software.
» C is the state of technology constant and reflectsstraints that
impede the progress of the programmer.
From the expression, it can be observed that wineis¢hedule of the project
Is compressed, the required effort increases.
The Putnam estimation model works reasonably veelvéry large systems,

but seriously overestimates the effort on mediuchsmall systems.

2.7 Jensen Model for Staffing Level Estimation

Jensen model is very similar to Putnam model. Hawngav attempts to soften
the effect of schedule compression on effort to enalapplicable to smaller
and medium sized projects. Jensen proposed thé@gua

L?e@ K1/2
Where G is the effective technology constantjg the time to develop the

software, and K is the effort needed to developstifevare.

2.8 Tools for Scheduling

Scheduling the project tasks is an important ptojgleanning activity.
Scheduling involves deciding which tasks would &lkeeh up when. In order
to schedule the project activities, a software ggbmanager needs to do the

following.

Copy Right DTE&T, Odisha Page 44

I)ldentify all the tasks necessary to comptateproject.

i) Break down larger tasks into a logical set ofadl activates which would
be assigned to different engineers.

iii) Create the work break down structure and twlfthe dependency among
the activates. Dependency among the diffeaetivates determines the
order in which the different activates woulddagried out.

Iv) Establish the most likely estimates for thmei durations necessary to

complete the activities.

V) Resources are allocated to each activity. Resoallocation is typically
done using a Gantt chart.

vi) Plan the starting and ending dates for variactsvities. The end of each

activity is called a milestone.

Vii) Determine the critical path

A critical path is the chain of activitiesathdetermine the duration of the

project.

The first step in scheduling a software projectolmes identifying all the
tasks necessary to complete the project. Next,lahge tasks are broken
down into logical set of small activities which wdue assigned to different

engineers.

After the project manager has broken down the task created the work
breakdown structure, he has to find the dependameygng the activities.
Dependency among the different activities detersthe order in which the
different activities would be carried out. If antigity A requires the results
of another activity B, then activity A must be sdbked after activity B. The
task dependencies define a partial ordering amasigst

Copy Right DTE&T, Odisha Page 45

Once the activity network representation has beerked out, resources are
allocated to each activity. Resource allocatiotyscally done using a Gantt
chart. After resource allocation is done, a Projecaluation and Review
Technique chart representation is developed. THeTP&hart representation

IS suitable for program monitoring and control.

2.9 Use of Work Breakdown Structure, Activity Netwaks,
Gantt Chart and PERT in Scheduling

Work Breakdown Structure

Most project control techniques are based on bngadlown the goal of the
project into several intermediate goals. Each méeshate goal can be broken
down further. This process can be repeated urth gaal is small enough to

be well understood.

Work breakdown structure (WBS) is used to decompmggven task set
recursively into small activities. In this technguone builds a tree whose
root is labelled by the problem name. Each nodtheftree can be broken
down into smaller components that are designatectiiidren of the node.
This “work breakdown” can be repeated until eachf lsode in the tree is
small enough to allow the manager to estimate iie, sdifficulty and
resource requirements.

The goal of a work breakdown structure is to idgrdil the activities that a

project must undertake.

Copy Right DTE&T, Odisha Page 46

MIS
Application

Requirement Design Code Test Document
Specification
Data base Graphical Data base Graphical
part user part user
interface interface
part part

Fig. 2.3 Work breakdown structure of an MISipemn

The task is broken down into a large number of braativities; these
activities can be distributed to a large numbeemdineers. Thus it becomes
possible to develop the product faster. Thereftrdye able to complete a
project in the least amount of time the managedside break large tasks
into smaller subtasks, expecting to find more peliam. In scheduling the
manager decide the order in which to do these tasks

Two general scheduling techniques are Gantt Chads€PERT Charts.

Activity Networks and Critical Path Method

Work Breakdown Structure representation of a ptagtransformed into an
activity network by representing the activitiesntéed in work breakdown
structure along with their interdependencies. Ativag network shows the
different activities making up a project, their iegited durations and
interdependencies.

Copy Right DTE&T, Odisha Page 47

Design Code database
database part par 12(

Requirements
specification

15

45

Integration
and test 120

Design GUI
part 30

Code GUI
part 45

A 4

Write user
manual 60

Fig. 2.4 Activity Network representation of the $problem

Managers can estimate the time duration for théemiht tasks in several

ways. A path from the start node to the finish nodataining only critical

tasks is called a critical path.

Critical Path Method

From the activity network Fig.2.4 representatiohge tfollowing
analysis can be made:

The minimum time (MT) to complete the project ig thaximum of
all paths from start to finish.

The earliest start (ES) time of a task is the maxmof all paths from
the start to this task.

The latest start (LS) time is the difference betweédT and the
maximum of all paths from this task to the finish.

The earliest finish time (EF) of a task is the soirthe earliest start

time of the task and the duration of the task.

Copy Right DTE&T, Odisha Page 48

* The latest finish (LF) time of a task can be aitdi by subtracting
maximum of all paths from this task to finish fronT.

» The slack time (ST) is LS — EF and equivalently barwritten as LF —
EF. The slack time is the total time for which aktanay be delayed
before it would affect the finish time of the prcjeThe slack time
indicates the flexibility in starting and completiof tasks.

» A critical task is one with a zero slack time.

* A path from the node to the finish node contairondy critical tasks is
called a critical path.

» The above parameters for different tasks for th& Rhoblem (Fig.2.4)

are shown in the following table.

Task ES EF LS LF ST
Specification Part 0 15 0 15 0
Design Database Part 15 60 15 60 0
Design GUI Part 15 45 90 120 75
Code Database Part 60 165 60 165 C
Code GUI Part 45 90 120 165 75
Integrate and Test 165, 285 165 28 O
White User Manual 15 75 225 285 210

The critical paths are all the paths whose duraéiqnals MT. The critical

path in Fig.2.4 is shown with thick arrow lines.

Gantt Chart

Gantt charts are a project control technique tlzat be used for several
purposes including scheduling, budgeting and resoulanning. Gantt

Charts are mainly used to allocate resources toiteet. A Gantt chart is a

Copy Right DTE&T, Odisha Page 49

special type of bar chart where each bar represantctivity. The bars are
drawn against a time line. The length of each lsaproportional to the

duration of the time planned for the correspondiotyvity.

Jan 1 Jan 15 feb 15 rarch 1 aprl 1 Inly 1 niov 1
T T
[\ L [
: : |
Start ' ! ' : ' .
Recpuirerent ! ' . ! I
sprification : ! ' I !
| .
! | | I
} 1 |
Design Database Part I I ,
| [|
- [|
Design GUI Part | | |
I I
| 1 |
| t
. : Code Database Part |
1 i ' I
| :
. Code (T Part !
1 1
I \ I
: I - | bpris Integrate and test
I Write user manual ' 1 I
' ' 1 I
I t f . |
1 1 | 1)

Gantt Chart representation of the MII3 Pmblem
Fig. 2.5 Gantt Chart Representation of the MIS b

In the Gantt Chart the bar consists of a write paud a shaded part. The
shaded part of the bar shows the length of timé &sk is estimated to take.
The white part shows the slack time, that is theskatime by which a task

must be finished.

PERT (Project Evaluation and Review Technique) Chas

PERT controls time and cost during the project alisd facilities finding the
right balance between completing a project on temel cost during the
project and also facilitates finding the right veda between completing a

project on time and completing it within a budget.

Copy Right DTE&T, Odisha Page 50

A PERT Chart is a network of boxes (or circles) amtbws. The boxes
represent activities and the arrows are used tevshe dependencies of
activities on one another. The activity at the he&é@n arrow cannot start
until the activity at the tail of the arrow is fefied. The boxes in a PERT
Chart can be decorated with starting and endingsdgdr activities. PERT

Chart is more useful for monitoring the timing pregs of activities.

Database Code

Preparation of __—¥| desia database

software Design art
requirement 9 P

specification

A 4

A 4

Integration (— Finish
and testin

GUI

) Code GUI
design

part

A 4

Fig.2.6 PERT Chart representatibthe MIS problem

PERT Chart shows the interrelationship among tkkstan the project and

identifies critical path of the project.

2.10 Organisation Structure

There are essentially two broad ways in which @wsokt development
organization can be structured: function format anoject format. In the
project format, the development staff are dividesdd on the project for
which they work. In the functional format, the deyement staff are divided
based on the functional group to which they belmngThe different projects
bellow engineers from functional groups for specghases of the projects

and return them to their functional group upon clatpn of the phase.

Copy Right DTE&T, Odisha Page 51

Top Management

Top Management

Functional Grou

Requirements Project
Project Project _ Team 1
Team 1 Team n Design

Coding

Testing

Project
Fig. Project Organization Management

Project
Maintenanc Teamn

Fig.2.7 Functional
oraanizatiol

In the functional format, different teams of pragraers perform different
phases of a project.

For example, one team might do the requirementsifsgaion, another do
the design, and so on. The partially completed yrbdasses from one team
to another as the product evolves. Therefore, Whetional format requires
considerable communication among the different seaatause the work of
one team must be clearly understood be team musiebdy understood by

the subsequent teams working on the project.

In the project format, a set of engineers are assido the project at the start
of the project and they remain with the projeittthe completion of the
project. Thus, the same team carries out all tie diycle activities.
Obviously, the functional format requires more cammncation among teams
than the project format, because one team mustrstaciel the work done by

the previous teams. The main advantages of a turadtorganization are:

Copy Right DTE&T, Odisha Page 52

» Ease of staffing
» Production of good quality documents
» Job specialization

» Efficient handling of the problems associated witiinpower turnover

The functional organisation allows engineers toobee specialists in their
particular roles, e.g. requirements analysis, dhesigoding, testing,
maintenance etc. the functional organisation alsoviges an efficient
solution to the staffing problem. A project orgsation structure forces the
manager to take in almost a constant number ofneegs for the entire

duration of the project.

2.11 Team Structure

Team structures address the issue of organizafidheoindividual teams.
Three format team structures are:

» Chief programmer

» Democratic

» Mixed team organization

Chief Programmer Team

In this organization, a senior engineer providestéthnical leadership and is
designated as the chief programmer. The chief progrer partitions the task

into small activities and assigns them to the tesambers.

Copy Right DTE&T, Odisha Page 53

Project Manager

(Software engineers)
Fig. 2.8 Chief programmer team structure

The chief programmer provides an authority. Theetlprogrammer team
leads to lower team morale, since the team members under the constant
supervision of the chief programmer. This also hrki their original
thinking.

The chief programmer team is probably the mostieffit way of completing
and small projects. The chief programmer team &tracworks well when

the task is within the intellectual grasp of a sengdividual.

Democratic Team

The democratic team structure does not enforcefamyal team hierarchy.
Typically a manager provides the administrativedérahip. At different

times, different members of the group provide técddieadership.

Copy Right DTE&T, Odisha Page 54

(__poftware engineer

—Communication path

Fig.2.9 Democratic team structure

The democratic organization leads to higher moaale job satisfaction. The
democratic team structure is appropriate for lestetstood problems, since
a group of engineers can invent better solutioas #hsingle individual as in
a chief programmer team. A democratic team stredsisuitable for projects
requiring less than five or six engineers and fBsearch-oriented projects.
The democratic team organization encourages egglesgramming as

programmers can share and review one another’s.work

Mixed Control Team Organization

The mixed team organization draws upon the idems fsoth the democratic
organization and the chief programmer organizatidns team organization

incorporates both hierarchical reporting and demcset-up.

Copy Right DTE&T, Odisha Page 55

Project manager

Reporting

Senior engineers

Software
engineers

Communicatio

Fig.2.10 Mixed team structure

The mixed control team organization is suitable lfoige team sizes. The

democratic arrangement at the senior engineers iewesed to decompose

the problem into small parts. Each democratic pedtuthe programmer level

attempts to find solution to a single part. Thignteattempts to find solution

to a single part. This team structure is extrempelgular and is being used in

many software development companies.

Copy Right DTE&T, Odisha

2.12 Importance of Risk Identification, Risk Assessent and

Risk Containment with reference to RislManagement
Risk management is an emerging area that aimsdeessl the problem of
identifying and managing the risk associated witdofiware project. Risk in
a project is the possibility that the defined goate not met. The basic

motivation of having risk management is to avoid\helooses.

Risk is defined as an exposure to the chance afyinpr loss. That is risk
implies that there is possibility that somethingyaieve may happen. In the
content of software project, negative implies thate is an adverse effect on
cost, quantity or schedule. Risk management aimedaicing the impact of
all kinds of risk that might affect a project.
Risk management consist of three essential aetwviti

* Risk identification

* Risk assessment

* Risk containment

Risk Identification

A project can get affected by a large variety aksi Risk identification
identifies all the different risks for a particulamoject. In order to identify the
important risks which might affect a project, itnecessary to categorize risk
in to different classes. There are three main caieg of risks which can
affect a software project are:

» Project Risks

Project risks concern various forms of budgetasghedule, personal,
resource and customer- related problems. Softwaiatangible, it is very
difficult to monitor and control a software project

= Technical Risks

Copy Right DTE&T, Odisha Page 57

Technical risk concern potential design, implemgoitg interfacing, testing,
and maintenance problem. Technical risks also deluncomplete
specification, changing specification, technicatemainly. Most technical
risks occur due the development teams insufficlamdwledge about the
product .

= Business risks

Business risks include risks of building an excdllproduct that no one

wants, losing budgetary or personal commitments etc

Risks Assessment

The goal of risks assessment is to rank the riskbat risk management can
focus attention and resources on the more riskssité-or risks assessment,
each risk should be rated in two ways:
a> The likelihood of a coming true (r)
b> The consequence of the problem associated matirisk(s)

The priority of each risk can be computed as

p=r*s

Where p is the priority with which the risk must bandled, r is the
probability of the risk becoming true and s is flewerity of damaged caused

due to the risk becoming true .

Risk Containment

After all the identified risk of a project is assed, plans must be made to
contain the most damaging and the most likely ridkgee main strategies
used for risks containment are:

» Avoid the risk

» Risk reduction

» Transfer the risk

Copy Right DTE&T, Odisha Page 58

Avoid the Risk
This may take several forms such as discussiorstivet customer to reduce

the scope of the work and giving incentives to ragrs to avoid the risk of
manpower turnover etc.
Transfer the Risk
This strategy involves getting the risky compone@evelop by a third party
or buying insurance cover etc.

Risk Reduction
This involves planning ways to contain the damage td a risk.

Risk leverage = (risk exposure before reductionisk rexposure after
reduction) / (Cost of reduction)

Copy Right DTE&T, Odisha Page 59

Chapter-3
Understanding the need of Requirement Analysis

Contents

3.1 Need for requirement analysis
3.2 Steps in requirement dictation for software niidting the process
facilitated
application specific techniques and qualitydtion deployment.
3.3 Principles of analysis.
3.4 Software prototyping.
3.5 Prototyping approach.
3.6 Prototyping tools and methods.
3.7 Software requirement specification principle.
3.8 SRS Document,
3.9 Characteristics and organization of SRS doctimen

3.1 Need for Requirement Analysis

Requirement analysis is a Software engineering ttaskbridges the gap
between system level requirements engineering aftivare design.
Requirement analysis provides software designdr aitepresentation of
system information, function, and behavior that bartranslated to data,
architectural, and component-level designs.

Software requirement analysis may be diviaeda five areas of effort:

v Problem recognition

Evaluation and synthesis

Modeling

Specification

D D N NN

Review

Copy Right DTE&T, Odisha Page 60

3.2 Steps in Requirements Elicitation for Software:Initiating
the Process, Facilitated Application SpecificationlTechniques,
Quality Function Deployment

Before requirements can be analyzed, modeled arifigue they must be

gathered through an elicitation process.

Initiating the Process

The most commonly used requirements elicitatiorhnepe is to
conduct a meeting or interview. Customer meetings the most

commonly used technique.

Use context free questions to find out customevalgyand benefits,
identify stakeholders, gain understanding of probhledetermine
customer reactions to proposed solutions, and ssseseting

effectiveness.

Facilitated Application Specification Techniques

Meeting held at neutral site, attended by bothvws® engineers and

customers.
Rules established for preparation and participation

Agenda suggested to cover important points and ltlowafor

brainstorming.
Meeting controlled by facilitator (customer, devsdo, or outsider).

Goal is to identify problem, propose elements diitson, negotiate
different approaches, and specify a preliminary eét solution

requirements.

Copy Right DTE&T, Odisha Page 61

Quality Function Deployment (QFD)

Quality function deployment is a quality managemdathnique that
translates the needs of the customer into techrecalirements for software.

Quality function deployment identifies three tymésequirements:

* Normal requirements: The objectives and goalsdhattated for a

product or system during meetings with the customer

» Expected requirements: These requirements are dinpb the
product or system (customers assumes will be presena
professionally developed product without havingréquest them
explicitly).

» Exciting requirements: These features that go beydhe
customer's expectations and prove to be very gagsivhen they

are present.

Function deployment is used to determine the vafueach function that is
required for the system. Information deploymentnidees both the data
objects and events that the system must consume paodluce. Task
deployment examines the behavior of the system rodyzt within the
context of its environment. Value analysis useddébermine the relative

priority of requirements during function, informati, and task deployment.

3.3 Principles of Analysis
All analysis methods are related by a set of opmral principles:

* The information domain of the problem must be rspmted and
understood.

* The functions that the software is to perform niestiefined.

» Software behavior must be represented

Copy Right DTE&T, Odisha Page 62

* Models depicting information function and behavionust be

partitioned in a hierarchical manner that uncowdetsiil.

 The analysis process should move from the essematrmation

toward implementation detail.

3.4 Software Prototyping

The prototyping paradigm can be either close-enoile@dpen-ended. The
close-ended approach is called throwaway prototy@nd an open-ended

approach called evolutionary prototyping.

3.5 Prototyping Approach

Throwaway prototyping: Prototype only used as aastration of product

requirements.

Evolutionary prototyping uses the prototype asfitist part of an analysis

activity that will be continued into design and straction.

The customer must interact with the prototypes gssential that:
a) Customer resources must be committed to evaluatm@hrefinement
of the prototype.
b) Customer must be capable of making reguénts decisions in a

timely manner.

3.6 Prototyping Tools and Methods

Three generic classes of methods and tools are:
* Fourth generation techniques: Fourth generati@hnigues (4GT)
tools allow software engineer to generate execetadtle quickly.
* Reusable software components: Assembling protofyga a set of
existing software components.
* Formal specification and prototyping environmenés énteractively

create executable programs from software spatidin models.

Copy Right DTE&T, Odisha Page 63

3.7 Software Requirement Specification Principle

Specification principles are:

» Separate functionality from implementation.

» Develop a behavioral model that describes functioesponses to all
system stimuli.

» Define the environment in which the system operatesindicate how
the collection of agents will interact with it.

» Create a cognitive model rather than an implememtamhodel

» Recognize that the specification must be extensioié tolerant of
incompleteness.

» Establish the content and structure of a specifinato that it can be

changed easily.

3.8 SRS Document

The requirements analysis and specification phtsésonce the feasibility
study phase is completed and the project is foarktfinancially sound and
technically feasible. The goal of the requirememdlgsis and specification
phase is to clearly understand the customer regemés and to
systematically organize these requirements in aifspation document. This
phase consists of two activities:

* Requirements gathering and analysis.

* Requirements specification

System analysts collect data pertaining to the ygbtb be developed and
analyze these data to conceptualize what exactygdsdéo be done. The
analyst starts the requirements gathering and sisalgctivity by the

collecting all information from the customer whicbuld be used to develop

the requirements of the system. The analyst theslyzes the collect

Copy Right DTE&T, Odisha Page 64

information to obtain a clear and thorough undeditag of the product to be
developed.
Two main activities involved in the requirementsthgaing and analysis
phase are:

» Requirements Gatheringfhe activity involves interviewing the end-

users and customers and studying the existing dewstarto collect all
possible information regarding the system.
» Analysis of Gathered RequiremeniBhie main purpose of this activity is

to clearly understand the exact requirementh®fcustomer. The analyst

should understand the problems:

* What is the problem?

* Why is it important to solve the problem?

* What are the possible solutions to the problem?

* What exactly are the data input to the system amat @xactly the data

output required of the system?

* What are the complexities that might arise whillisg the problem?
After the analyst has understood the exact custamquirements, he
proceeds to identify and resolve the various regénts problems.

There are three main types of problems in thairement that analyst
needs to identify and resolve:
» Anomaly

» Inconsistency

» Incompleteness

Anomaly: An anomaly is an ambiguity in the reqment. When a
requirement is anomalous, several interpretationth& requirement are

possible.

Copy Right DTE&T, Odisha Page 65

Example: In a process control application, a negnent expressed by one
user is that when the temperature becomes high,h#daer should be

switched off. (Words such as high, low, good, bad, @re ambiguous

without proper quantification). If the thresholdoale which the temperature
can be considered to be high is not specified, hezan be interpreted

differently by different people.

Inconsistency: Two requirements are said to bensistent, if one of the

requirements contradicts the other two-end userthef system give

inconsistent description of the requirement.

Example: For the case study of the office autoomatone of the clerk

described that a student securing fail gradesreetlor more subjects should
have to repeat the entire semester. Another clenktioned that there is no
provision for any student repeat a semester.

Incompleteness: An incomplete set of requiremesitsne in which some

requirements have been overlooked.

Software Requirement Specification

After the analyst has collected all the requiretbnimation regarding the
software to be developed and has removed all intsEmESS,
inconsistencies and anomalies from the specifioatianalyst starts to
systematically organize the requirements in thenfof an SRS document.
The SRS document usually contains all the userir@ments in an informal
form.
Different People need the SRS document for veffergint purposes. Some
of the important categories of users of the SRh@nt and their needs are
as follows.
» Users, customers and marketing personnel
The goal of this set of audience is to ensure that system as

describe in the SRS document will meet their needs.

Copy Right DTE&T, Odisha Page 66

* The software developers refer to the SRS docuneentake sure that
they develop exactly what is required by the custom

» Test EngineersTheir goal is to ensure that the requirements are
understandable from a functionality point of viesg that they can test
the software and validate its working.

» User Documentation Writers: Their goal in reading 6RS document
Is to ensure that they understand the documentemeligh to be able
to write the users’ manuals.

* Project Managers

They want to ensure that they can estimate the abghe project
easily by referring to be SRS document and thatomtains all
information required to plan the project.

* Maintenance Engineers

The SRS document helps the maintenance enginearslegrstand the
functionalities of the system. A clear knowledgetité functionalities
can help them to understand the design and code.

Contents of the SRS Document
An SRS document should clearly document:

* Functional Requirements

* Nonfunctional Requirements

* Goals of implementation

The functional requirements of the system as dootedein the SRS
document should clearly describe each function wiihe system would
support along with the corresponding input and outiata set.

Copy Right DTE&T, Odisha Page 67

systerm

output
input — -

Fig. 3.1 Corteenf SRS Document

The non-functional requirements also known as guaéquirements. The
non-functional requirements deal with the charasties of the system that
cannot be expressed as functions.

Examples of nonfunctional requirements include etgpeconcerning
maintainability, portability and usability, accuyaef results. Non-functional
requirements arise due to user requirements, budgmtstraints,
organizational policies and soon.

The goals of implementation part of the SRS documeres some general
suggestion regarding development. This section mdghument issues such
as revisions to the system functionalities that rfnayequired in the future,

new devices to be supported in the future.

3.9 Characteristics and Organization of SRS Docunmé
Characteristics of SRS document

Concise: The SRS document should be concise, ugamis, consistent
and complete. Irrelevant description reduced reiilaland also increases

error possibilities.

Structured: The SRS document should be well-stradtuA well-structured

document is easy to understand and modify.

Copy Right DTE&T, Odisha Page 68

Block-box View: It should specify what the systeimosld do. The SRS

document should specify the external behavior efdystem and not discuss
the implementation issues. The SRS should speh#yeixternally visible

behavior of the system. [For this reason the SR&ment is called the
block-box specification of a system.]

Conceptual Integrity : The SRS document shouldl@kbonceptual integrity

so that the reader can easily understand the dsnten

Verifiable: All requirements of the system as doemted in the SRS
document should be verifiable if and only if thexests some finite cost-
effective process with which a person of machine dseck that the software
meets the requirement.

Modifiable : The SRS is modifiable if and onlyit§ structure and style are
such that any changes to the requirements can lkde ewsily, completely

and consistently while retaining the structure siyte.

Organization of the SRS Document

Organization of the SRS document and the issuesndispon the type of the
product being developed. Three basic issues of SB&iments are:
functional requirements, non functional requirerserdnd guidelines for
system implementations. The SRS document shoutaidamized into:
1. Introduction
(a) Background
(b)Overall Description
(c)Environmental Characteristics

(DHardware

(iPeripherals

(iPeople
1. Goals of implementation

Functional requirements

Copy Right DTE&T, Odisha Page 69

Nonfunctional Requirements
Behavioural Description

(a) System States

(b)Events and Actions

The “introduction’ section describes the contexwvinch the system is being
developed, an overall description of the system #me environmental
characteristics. The environmental characteristiggsection describes the
properties of the environment with which the systeithinteract.

Copy Right DTE&T, Odisha Page 70

Chapter-4
Understanding the Principles and Methods of S\W Design

Contents

4.1 Importance of S/W Design

4.2 Design principles and Concepts

4.3 Cohesion and coupling

4.4 Classification of cohesiveness

4.5 Classification of coupling

4.6 S/W design approaches

4.7 Structured analysis methodology

4.8 Use of DF diagram

4.9 List the symbols used in DFD

4.10 Construction of DFD

4.11 Limitations of DFD

4.12 Uses of structured of chart and structuredydes
4.13 Principles of transformation of DFD to struetlichart
4.14 Transform analysis and transaction analysis
4.15 Object oriented concepts

4.16 Object oriented and function oriented design

4.1 Importance of Software Design

Software design aims to plan and create a bluefarine implementation of
the software. The main aim and focus of the sofw@gsign process is to
cover the gap between understanding the specditaand implementing
them in the software. Software design transfornes SRS document into
implementable form using a programming language.e THesign
representations are used to describe how the systémbe structured and
developed to meet the specification in the bestmaan
The following items are designed and documentethduhe design phase.

» Different modules in the solution should be cleanlgntified. Each

module should be named according to the task fopes.

» The control a relationship exists among various mexlshould be

Copy Right DTE&T, Odisha Page 71

identified in the design document. The relatiopgkialso known as the call

relationship.

* Interface among different modules. The interfaceormgn different

modules identifies the exact data items exchangexhg the modules.
« Data structures of the individual modules.

» Algorithms required to implement the individual nubeks.

4.2 Design Principles and Concepts
Design Principles
Software design is both a process and a model. dBsgn process is a
sequence of steps that enable the designer toilnesalt aspects of the
software to be built. Basic design principles are:

0 The design process should not suffer from “tunmsbmn”.
The design should be traceable to the analysis imode

The design should not reinvent the wheel.

© O O

The design should “minimize the intellectual diste” between the
software and the problem in the real world.

The design should exhibit uniformity and integratio

The design should be structured to accommodategehan

The design should be structured to degrade gently.

Design is not coding.

The design should be assessed for quality.

©O O O o o o

The design should reviewed to minimize conceptuairs.

Design Concepts

Abstraction: Each step in the software engineepiogess is a refinement in
the level of abstraction of the software solution.

- Data abstractions: a named collection of data

Copy Right DTE&T, Odisha Page 72

- Procedural abstractions: A named sequence sfructions in a
specific function
- Control abstractions: A program control meckBamwithout

specifying internal details.

The design process takes the SRS documents aspilteaind is dedicated to
plan for implementation of the software. The desagftivities are classified
into two parts.

* Preliminary(or high-level)design

» Detailed design

Preliminary Design / High-Level Design

Through high-level design, a problem is decompaorg&mia set of modules,
the control relationships among various modulestiied and also the
interfaces among various modules are identifiece dbtcome of high-level
design is called the program structure or the sa#warchitecture many
different types of notations have been used toessmt a high-level design.
A popular way is to use a tree-like diagram callled structured chart to
represent the control hierarchy in high-level desi§nother popular design
representation technique called UML that is beiagduto document object-
oriented design. Once the high-level design is detap detailed design is
undertaken.

Detailed Design

During detailed design, the data structure andalgerithms of different
modules are designed. The outcome of the detakstha stage is usually

known as the module specification document.

Copy Right DTE&T, Odisha Page 73

What is a Good Software Design

There is no unique way to design a system. Using gshme design
methodology, different engineers can arrive at vehjferent design
solutions. Even the same engineer can work out nd#fgrent solutions to

the same problem.

The definition of “a good software design” can vatgpending on the
application for which it is being designed. For exde, the memory size
used up by a program may be an important issueh&oacterize a good
solution for embedded software development-sincéesltled applications
are often required to be implement using memonylinoited size due to
space, cost or power consumption constraints. Riredded applications,
factors such as design comprehensibility may takack seat while judging
the goodness of design. For embedded applicatbmresmay sacrifice design
comprehensibility to achieve code compactness. efbes, the criteria used
to judge how good a given design solution is caty vadely depending on
the application. The goodness of a design is depd@ndn the targeted
application. Different characteristics of a softevdesign are:

Correctness: A good design should correctly implement all the
functionalities of the system.

Understandability: A good design should be easily understandable.
Efficiency: A good design solution should adequately addressurce, time
and cost optimization issues

Maintainability: A good design should be easy to change.

In order to facilitate understandability of a desithe design should have the

following features:

* |t should assign consistent and meaningful namesddous design

components.

Copy Right DTE&T, Odisha Page 74

* The design should be modular. The term modularigams that it
should use a cleanly decomposed set of modules.

It should neatly arrange the modules in a hiergrely. tree-like diagram.

Modularity

A modular design achieves effective decomposibiba problem. It is a basic
characteristic of any good design solution. Decositimm of a problem into
modules facilitates the design by taking advants#gbe divide and conquers
principle. If different modules are independent ezch other, then each
module can be understood separately. This redueesdmplexity of the

design solution.

Clean Decomposition

The modules in a software design should display lighesion and low
coupling. The modules are more or less indepenafezdch other.

Layered Design

In a layered design, the modules are arranged hier@archy of layers. A
module can only invoke functions of the modulegha layer immediately
below it. A layer design can make the design smtugasily understandable.
A layer design can be considered to be implementmgtrol abstraction,

since a module at a lower layer is unaware of tgkedr layer modules.

4.3 Cohesion and Coupling

A good software design implies clean decompositbrthe problem into
modules and thereafter the neat arrangement oé tmeslules. The primary
characteristics of a neat module decompositionhagh cohesion and low
coupling. Cohesion is a measure of the functiotrahgth of a module where
as the coupling between two modules is a measur¢hefdegree of

interdependence or interaction between the two hesdé modules having

Copy Right DTE&T, Odisha Page 75

high cohesion and low coupling is said to be fuoraily independent of
other modules. A cohesive module performs a sitagk or function.

Cohesion

Cohesion is a measure of the strength of the ioakltip between
responsibilities of the components of a module. @daie is said to be highly
cohesive if its components are strongly relatedaoh other by some means
of communication or resource sharing or the natdinresponsibilities. High
cohesion facilitates execution of a task by maximumntra-modular
communication and least inter-module dependenciéis. promotes
independencies between different modules.

Error isolation

Functional independence reduces error propagatlbna module is
functionally independent, its degree of interactrath other modules is less.
Therefore, any error existing in a module would dioectly affect the other
modules.

Scope for Reuse

Reuse of a module becomes possible, because ealhientmes some well-
defined and precise functions and the interfacehef module with other
module is simple and minimal. Therefore a cohesnm@lule can be easily
taken out and be reused in a different program.

Understandability

Complexity of the design is reduced, because @iffemodules are more or

less independence of each other and can be uno@iistesolation.

Copy Right DTE&T, Odisha Page 76

4.4 Classification of Cohesiveness

There are seven types or levels of cohesion.

Coincidental| Logical | temporal Procedural communicatio‘n sequential functiona

Low —High
Fig. 4.1 Classificatiof Cohesion

Coincidental is the worst type of cohesion and fiemal is the best cohesion.
Coincidental Cohesion

A module is said to have coincidental cohesiorit, ffferforms a set of tasks
that relate to each other very loosely, if at &ll.this case the module
contains a random collection of functions.

The different functions of the module carry out.eTdHifferent unrelated
activities are issuing of librarian leave request.

Logical Cohesion

A module is said to be logically cohesive, if alements of the module
perform similar operations. For example, consideragule that consists of a
set of print functions to generate various typesoofput reports such as
salary slips annual reports etc.

Temporal Cohesion

When a module contains functions that are relétedhe fact that all the
functions must be executed in the same time spanntodule is said to
exhibit temporal cohesion. For example, consider #ituation: when a
computer is booted, several functions need to biemeed.

These include initialization of memory and devickmding the operating
system etc. When a single module performs all thesles, then the module

can be said to exhibit temporal cohesion.

Copy Right DTE&T, Odisha Page 77

Procedural Cohesion

A module is said to possess procedural cohesidheiget of functions of the
module are executed one after the other, thougsetfienctions may work
entirely different purposes and operate on diffedata. For example, in an
automated teller machine(ATM),member-card validatis followed by
personal validation by personal identification n@mband following this, the
request option menu is displayed.

Communication Cohesion

A module is said to have communicational cohesibagl|l functions of the
module refer to or update the same data structure.

Sequential Cohesion

A module is said to possess sequential cohesithe different functions of
the module execute in a sequence, and the output dne function is input
to the next in the sequence.

Functional Cohesion

A module is said to possess functional cohesiodifiérent function of the
module cooperate to complete a single task.

The functions issue-book (), return-book (), quieopk () and find borrower
() together manage all activities concerned witbkoending.

4.5 Classification of Coupling

The coupling between two modules indicates the ekegf interdependence
between modules. Two modules with high coupling astongly
interconnected and thus dependent on each othes. miedules with low
coupling are not dependent on one another.”Uncopti@odules have no

interconnections, they are completely independent.

Copy Right DTE&T, Odisha Page 78

O O
OREN®

Fig. 4.2 Uncoupled: Nopeadencies

Y
— »
P »(

Fig. 4.3 Loosely coupled: Fig. 4.4 Highly coupled:
some dependencies many dbpenes

A good design will have low coupling. Coupling i®asured by the number
of interconnections between modules. Coupling m®es as the number of
calls between modules increases.

Different types of coupling are:

Data Coupling

It is a type of loose coupling and combines modulgspassing some

parameters from one module to another. The parasnttat are passed are
usually atomic data type of programming languaggeak integer, a float, a

character etc. This data item should be probldatad and not used for

control purposes.

Copy Right DTE&T, Odisha Page 79

Data Stamp Control Common Content

Fig. 4.5 Classification of Coupling

Stamp Coupling

Two modules are stamp coupled, if they communiaabeg a composite data
item such as a structure in C.

Control Coupling

Module A and B are said to be control coupled #ytrcommunicate by
passing of control information.

Common Coupling

Two modules are common coupled, if they share sgloteal data items.

Content coupling

Content coupling exist between two modules, if tlemide is shared.eg. a

branch from one module into another module.

4.6 S/W Design Approaches

Two different approaches to software design arecfon-oriented design
and Object-oriented design

Function oriented design

Features of the function-oriented design approaeh a

Top-down decomposition
In top-down decomposition, starting at a high-leviel of the system, each
high-level function is successfully refined into maaletailed functions.

Ex Consider a function create-new-library membeictvlessentially creates

Copy Right DTE&T, Odisha Page 80

the record for a new member, assigns a unique nmmsimpenumber to him
and prints a bill towards his membership charges Timction may consists
of the following subfunctions:
» assign-membership-number
» create-member-record
e print-bill
Each of these sub functions may be split into naatailed sub functions
and so on.

Object Oriented Design

In the object-oriented design approach, the syssemewed as a collection
of objects. The system state is decentralized ambagobjects and each
object manages its own state information.

Objects have their own internal data which defimartstate. Similar objects
constitute a class. Each object is a member of sdass. Classes may inherit
features from a super class. Conceptually, objsmismunicate by message

passing.

4.7 Structured Analysis Methodology
The aim of structured analysis activity is to tfans a textual problem
description into a graphic model. Structured analisused to carry out the
top-down decomposition of the set of high-leveldiiwns depicted in the
problem description and to represent them gragdiic&luring structured
design, all functions identified during structuradalysis are mapped to a
module structure. Structure analysis technique asetd on the following
principles:

v' Top-down decomposition approach

v' Divide and conquer principle. Each function is daposed

independently

Copy Right DTE&T, Odisha Page 81

v' Graphical representation of the analysis resulisgu®ata Flow
Diagram (DFD).

4.8 Use of Data Flow Diagram

The DFD also known as bubble chart is a simple lgcap formalism that
can be used to represent a system in terms ofnfhe data to the system,
various processing carried out on these data &otliput data generated by
the system. DFD is a very simple formalism — isisple to understand and
use. A DFD model uses a very limited number of g symbols to
represents the functions performed by a systentt@ndataflow among these

functions.

4.9 Lists the Symbols used in DFD
Five different types of primitive symbols uskx constructing DFDs. The

meaning of each symbol is

Functional symbol (©) : A function igoresented is using a circle.
External entity symbol (|:|) : An externaltides are essentially those
physical entities external to the software systehiclv interact with the
system by inputting data to the system or by comsgithe data produced by
the system.

Data flow symbol ™) : A directed arc or amoav is used as a data flow
symbol.

Data store symbol (——) . A data stapresents a logical file. It is
represented using two parallel lines.

Output symbol ([__J) : The output symbol isdisghen a hard copy is
produced and the user of the copies cannot belclgaecified or there are

several users of the output.

Copy Right DTE&T, Odisha Page 82

4.10 Construction of DFD

A DFD model of a system graphically represent haeheinput data is
transformed to its corresponding output data thincau@ierarchy of DFDs.

A DFD start with the most abstract definition betsystem (lowest level)
and at each higher level DFD, more details areessieely introduced. The
most abstract representation of the problem is alslbed the context
diagram.

Context Diagram

The context diagram represents the entire system sisgle bubble. The
bubble is labelled according to the main functibnhe@ system. The various
external entities with which the system interactd the data flows occurring
between the system and the external entities arerapresented. The data
input to the system and the data output from tretesy are represented as

incoming and outgoing arrows.

X
: Z

Y
Fig. 4.6 Context Diagram

Level 1 DFD

The level 1 DFD usually contains between 3 and liblas. To develop the
Level 1 DFD, examine the high-level functional regments. If there are
between 3 to 7 high-level functional requiremetiien these can be directly
represented as bubbles in the Level 1 DFD. Weesgamine the input data
to these functions and the data output by thesetitns and represent them
appropriately in the diagram. If a system has nthan seven high-level
requirements, then some of the related requirenteavts to be combined and
represented in the form of a bubble in the LevBeFD.

Copy Right DTE&T, Odisha Page 83

Decomposition

Each bubble in the DFD represents a function peréor by the system. The
bubbles are decomposed into sub functions at tkeesaive level of the
DFD. Each bubble at any level of DFD is usuallyaaposed between three
to seven bubbles. Decomposition of a bubble shbeldarried out on until a
level is reached at

Example: Student admission and examination system
This statement has three modules, namely

* Registration module

» Examination module

* Result generation module

Registration module:

An application must be registered, for which thpplecant should pay the
required registration fee. This fee can be paidugh demand draft or cheque
drawn from a nationalized bank. After successfgligtation an enrolment
number is allotted to each student, which makestiheent eligible to appear
in the examination.

Examination module:

a) Assignments : Each subject has an associated assngnwhich is
compulsory and should be submitted by the studefuré a specified
date.

b) Theory Papers : The theory papers can be cordective. Core
papers are compulsory papers, while in electiveagtudents have a
choice to select.

C) Practical papers: The practical papers ampoatsory and every
semester has practical papers.
Result generation Module:

The result is declared on the University’s websithis website contains

Copy Right DTE&T, Odisha Page 84

mark sheets of the students who have appearee iexémmination of the said

semester.
Data Flow Diagram

Registration

Examination

Result Generation

Studen Student
\ Admission and
Examination
Systen \
Fig. 4.7 Level 0 DFD or Context Diagral
Level 1 DFD

1
Registration

v

Application
for
Reaistratiol

Student Detail

3

&

Enrolment No. Alloted

Examination
System

h

Student

Enter
Enrolment
No. and
Semeste

Enter Student

View Report

A 4

Choice 4
‘} Student Subject
Choice Choice Detail
Management
System 4
Student
Information
Entry
Administrator 5
—> Student
Information
Manaagemel

Fig 4.8 Level 1 DFD of Student Admission and Exaaion System

Copy Right DTE&T, Odisha

Page 85

Level 2 DFD

Registration Form

1.1
Administrator > Verification Student
@vmer 7'y
Enrolment No.
Demand Draft No. , Alloted
Cheque No.

A 4

Student Deta
1.2 A
Admission

Student Registered

Fig.4.9 Level 2 DFD of Registration

Enrolment No., Semester

User ID, Password

Student

/ Coordinator

2.1
Authenticated
Usel

A

User ID, Password

User Account Detail

Administrato

Fig. 4.10 Level 2 DFD of Authenticated

Copy Right DTE&T, Odisha Page 86

Mark Sheet

3.1 Semester Result

Marks

Information
> Managemer

3.2
Result
Report

Generatio

Student Detail

Marks Detall

Fia4.11Level 2 DFD of Examinatic

4.11 Limitations of DFD

¢ A data flow diagram does not show flow of contibldoes not show
details linking inputs and outputs within a tramgfation. It only
shows all possible inputs and outputs for eachstoamation in the
system.

¢ The method of carrying out decomposition to araehe successive
level and the ultimate level to which decompositisrcarried out are
highly subjective and depend on the choice and gaumt of the
analyst. Many times it is not possible to say wHM¥D representation
IS superior or preferable to another.

¢ The data flow diagram does not provide any spegfidance as to
how exactly to decompose a given function intsutbfunctions.

¢ Size of the diagram depends on the complexity @idigic.

Copy Right DTE&T, Odisha Page 87

4.12 Structured Design

The aim of structured design is to transform thgulte of the structured
analysis that is a DFD representation into a stnect chart. A structured
chart represents the software architecture i.e.vaneus modules making up
the system, the module dependency and the paramttat are passed
among the different modules. The structure chameasentation can be easily
implemented using some programming language. Sheenain focus in a
structure chart representation is on module stractii a software and the
interaction among the different modules. The pracaldaspects are not
represented in a structured design. The basicibgillocks which are used

to design structure charts are:

Rectangular boxes:A rectangular box represent module
Module invocation arrows

An arrow connecting two modules implies that durprggram execution,
control is passed from one module to the otherhi@ direction of the
connecting arrow.

Data flow arrows

These are small arrows appearing alongside the Iemadwocation arrows.
The data flow arrows are annotated with the cooedmg data name. The
data flow arrows represents the fact that the nadad passes from one
module to the other in the direction of the arrow.

Flow Chart vs Structure Chart

A flow chart is a convenient technique to repregbetflow of control in a

program. A structure chart differs from a flow dharthree principal ways:

« It is usually difficult to identify different modak of the software from its

flow chart representation.

Copy Right DTE&T, Odisha Page 88

« Data interchange among different modules is notesmted in a flow
chart.
Sequential ordering of tasks inherent ifloa chart is suppressed in a

structure chart.

4.13 Principles of transformation of DFD to structue chart

Structure design provides two strategies to gurdasftormation of a DFD
into a structure chart:

Transform analysis

Transaction analysis

Normally, one starts with the level 1 DFD, trangfsrin into module
representation using either the transform or thesiction analysis and then
proceeds towards the lower-level DFDs. At eaclellef transformation,
first determine whether the transform or the tratisa analysis is applicable
to a particular DFD.

Transform Analysis

Transform analysis identifies the primary functibnamponents (modules)
and the high level input and outputs for these comepts. The first step in
transform analysis is to divide the DFD into thtgees of parts:

* |nput

» Logical processing

= Qutput
The input portion in the DFD includes processes thensform input data
from physical to logical form. Each input portieaalled an afferent branch.
The output portion of a DFD transforms output ditan logical form to
physical form. Each output portion is called aneefht branch. The

remaining portion of a DFD is called central tramst.

Copy Right DTE&T, Odisha Page 89

In the next step of transform analysis, the stmgctchart is derived by
drawing one functional component for the centrahsform and the afferent
and efferent branches.

Identifying the highest level input and output sBitms require experience
and skill. The first level of structure chart isoguced by representing each
input and output unit as boxes and each centrnadfivams a single box.

In the third step of transform analysis, the sticetchart is refined by adding
subfunctions required by each of the high-levetfiomal components. Many
levels of functional components may be added. fnecess of breaking
functional components into subcomponents is cafiertoring. Factoring
includes adding read and write modules, error-hagdl modules,
Initialization and termination process etc. Thetdaag process is continued
until all bubbles in the DFD are represented indfnecture chart.

Transaction Analysis

A transaction allows the user to perform some mregol piece of work. In a
transaction-driven system, one of several possbatas through the DFD is
traversed depending upon the input data item. E#&rent way in which

input data is handled in a transaction. The nunatbdrubbles on which the
input data to the DFD are incident defines the nemds transactions. Some

transactions may not require any input data.

For each identified transaction, we trace the irgata to the output. In the
structure chart, we draw a root module and belagvrttodule we draw each

identified transaction of a module.

Copy Right DTE&T, Odisha Page 90

Chapter-5
Understanding the Principles of User I nterface Design

5.1 Rules for UDI

5.2 Interface design model

5.3 UID Process and models

5.4 Interface design activities defining interfagbkjects, actions and the
design issues.

5.5 Compare the various types of interface

5.6 Main aspects of Graphical Ul, Text based iatsef

5.1 Rules for UID (User Interface Design)

User interface design creates an effective comnatinic medium between a
human and a computer. User interface design begthsthe identification

of user, task, and environment requirements. Orss¥ tasks have been
iIdentified, user scenarios are created and analyrddfine a set of interface

objects and actions.

Three Golden rules of user interface design are:
» Place the user in control.
* Reduce the user's memory load.
» Make the interface consistent.
Place the user in control
Number of design principles that allow the usemtmntain the control are:
» Define interaction modes in a way that does notdoa user into
unnecessary or undesired actions.
= Provide for flexible interaction, different usersavie different
interaction preferences.

= Allow user interaction to be interruptible.

Copy Right DTE&T, Odisha Page 91

» Streamline interaction as skill levels advance alhmlv the interaction
to be customized.
» Hide technical internals from the casual user.
= Design for different interaction with objects tlzgipear on the screen.
Reduce the User's Memory Load
Principles that enable an interface to redueauer's memory load are:
» Reduce demand on short-term memory.
» Establish meaningful defaults.
= Define shortcuts that are intuitive.

» Disclose information in a progressive fashion.

Make the Interface Consistent
The interface should present and acquire informatica consistent fashion.
The set of design principles that help make theriate consistent are:

= Allow the user to put the current task into a magful context.

» Maintain consistency across a family of applicagion

5.2Interface Design Models

The process for designing a user interface begiib the creation of
different models of system function. Four differamer interface design
models are:

s User model

¢ Design model

% Mental model

¢ Implementation model
A software engineer establishes a user model,aft@are engineer creates a
design model, the end-user develops a mental irtftegas often called the
user’'s model or the system perception, and theamehtation of the system

create a system image.

Copy Right DTE&T, Odisha Page 92

A design model of the entire system incorporateta,darchitectural,
interface, and procedural representations of thtevace.
The user model establishes the profile of end-usletise system. The system

perception is the image of the system that endsusary in their heads.

5.3 The User Interface Design Process

The design process for user interfaces is iteradivg can be represented
using a spiral model. The user interface desigrcges® encompasses four
distinct activities

» User, task, and environment analysis and modelling

* Interface design

* Interface construction

* Interface validation
The initial analysis activity focuses on the pmfibf the users who will
interact with the system. Skill level and businesderstanding are recorded
and different user categories are defined. Thevsoét engineer attempts to
understand the system perception for each clagssers.
Once general requirements have been defined, a detaded task analysis
Is conducted. Those tasks that the user perfornag&¢omplish the goals of
the system are identified, described and elaborated
The goal of interface design is to define a seht#frface objects and actions
that enable a user to perform all defined tasksrtieets every usability goal

defined for the system.

Copy Right DTE&T, Odisha Page 93

5.4 Interface Design Activities, Defining InterfaceObjects and

Actions and the Design Issues

Interface Design Activities
Once task analysis has been completed, all tasksreel by the end-user
have been identified and the interface design ii¢tocommences. Interface
design steps can be accomplished using the folpapproach:

o Establish the goals and intentions for each task.
Map each goal and intention to a sequence of speafions.
Specify the action sequence of tasks and subtasks.

Indicate the state of the system.

© O o o

Define control mechanisms, that is the objectsautibns available to

the user to alter the system state.

o

Show how control mechanisms affect the state ofylséem.
o0 Indicate how the user interprets the state of tlgstesn from
information provided through the interface.

Defining Interface Objects and Actions
Once the objects and actions have been definedekmbrated. Interface
objects are categorized into types: source, taagekapplication:
= A source object (e.g. a report icon) is dragged drapped onto a
target object (e.g. a printer icon) such as toter@ahard copy of the
report.
= An application object represents application-spedhta that are not
directly manipulated as part of screen interacsioch as a list.
After identifying objects and their actions, aneirfce designer performs
screen layout which involves:

» Graphical design and placement of icons

Copy Right DTE&T, Odisha Page 94

= Definition of descriptive screen text
» Specification and titling for windows

» Definition of major and minor menu items

Design Issues
Four common design issues are:

= System response time

= User help facilities

= Error information handling and

= Command labelling
System response time is the primary complaint faanyn interactive
applications. System response time is measured tin@enpoint at which the
user performs some control action until the sofemaesponds with desired
output or action. Two important characteristicssgétem response time are
length and variability.
Two different types of help facilities are integratand add-on. An integrated
help facility is designed into the software frone theginning. An add-on help
facility is added to the software after the systeas been built. User help
facilities must be addressed: when it is availabbsy it is accessed, how it is
represented to the user, how it is structured, wizgtpens when help is
exited.
An effective error message can do much to imprdwe quality of an
interactive system and will significantly reduceeusfrustration when
problems do occur. Every error message or warnimgdyzced by an
interactive system should have the following chiastics:

» The message should describe the problem in sinaplgubge that a
user can easily understand.
» The message should provide constructive advicedoovering from

the error.

Copy Right DTE&T, Odisha Page 95

» The message should indicate any negative conseggienthe error.
» The message should be accompanied by an audibisual cue such

as a beep, momentary flashing, or a special ealouc.

5.5 Compare the Various Types of Interface

User interfaces broadly classified into three caitieg:
«» Command language-based interfaces
* Menu-based interfaces

¢ Direct manipulation interfaces

Command Language-Based Interfaces

A command language-based interface is based omriegi a command
language which the user can use to issue the codsn@he user is expected
to frame the appropriate commands in the languagk tgpe whenever
required. Command language-based interface allswvifideraction with the
computer and simplify the input of complex commands

Obviously, for inexperienced users, command langdzased interfaces are
not suitable. A command language-based interfaceasier to develop
compared to a menu-based or a direct-manipulatiderface because
complier writing techniques are well developed. Qe systematically
develop a command language interface by using thedard complier

writing tools: Lex and Yacc.

Usually, command language-based interfaces arecuiffto learn, and
require the user to memorize the set of primitiegnmands. Most users
make errors while formulating commands in the comdnanguage and also

while typing them in. In a command language-basaterface, all

Copy Right DTE&T, Odisha Page 96

interactions with the system is through a keyb@ard cannot take advantage
of mouse. For inexperienced users, command langoasgd interface are
not suitable.
Issues in Designing a Command Language Interface
» The designer has to decide what mnemonics to usadalifferent
commands. The designer should try to develop megéulin
mnemonics and yet be concise to minimize the amotityping
required.
» The designer has to decide whether the user wilallmved to
redefine the command names to suit their own peafass.
» The designer has to decide whether it should besilplesto
compose primitive commands to form more complex roamds.
A sophisticated command composition facility wouétjuire the
syntax and semantics of the various command connposiptions
to be clearly and unambiguously specified. Theitgltidb combine
commands can be usefully exploited by experienssdsy but is
guite unnecessary for inexperienced users.

Menu-based interfaces

The advantage of a menu-based interface over a aoochiianguage-based
interface is that menu-based interface does nafineethe users to remember
the exact syntax of the commands. A menu basedfante is based on

recognition of the command names. In this typentdrface the typing effort

Is minimal as most interactions are carried outulgh menu selections using
a pointing device.

Experienced users find a menu-based user intetfadee slower than a

command language-based interface because theymariast and get speed
advantage by composing different primitive commatalexpress complex

commands. Composing commands in a menu-basedaicgeis not possible.

Copy Right DTE&T, Odisha Page 97

A major challenge in the design of a menu-basedrfmte is that of
structuring the large number of menu choices inbkmageable forms.

The techniques available to structure of menu iteras

Scrolling Menu

When a full choice list cannot be displayed wittiie menu area, scrolling of
the menu items is required. This enables the aseetv and select the menu

items that cannot be accommodated on the screen.

Serolling menu

Fig.5.1 Font size selecting using scrolling menu

Walking Menu

Walking menu is a very commonly used menu to stineca large collection
of menu items. In this technique, when a menu itereelected, it causes
further menu items to be displayed adjacent ta i isub-menu. A walking
menu can be successfully used to structure commanbsif there are

limited choices since each adjacently displayed undoes take up screen

space and the total screen area, after all, isddni

Copy Right DTE&T, Odisha Page 98

Walking menu

Fig.5.2 Examples of walking menu

Hierarchical Menu:

In this technique, the menu items are organized ihierarchy or tree
structure. Selecting a menu item causes the cumentu display to be
replaced by an appropriate sub-menu. Walking mamube considered to be
a form of hierarchical menu. Hierarchical menu,tbe other hand, can be
used to manage a large number of choices, butgbes ware likely to face
navigational problems and therefore lose trackheirtwhereabouts in the
menu tree. This probably is the main reason whg/type of interface is very
rarely used.

Direct Manipulation Interfaces

Direct manipulation interfaces present the intexfee the user in the form of
visual models i.e. icons. This type of interfaceadled as iconic interface. In
this type of interface, the user issues commandsebiprming actions on the

visual representations of the objects.

Copy Right DTE&T, Odisha Page 99

The advantages of iconic interfaces are that tbasican be recognised by

the users very easily and icons are language-imdisoe.

5.6 Main aspects of Graphical Ul, Text based Integce

Aspects of GUI

» In a GUI, multiple windows with different informat can
simultaneously be displayed on the user screen.

» lIconic information representation and symbolic niation
manipulation is possible in a GUI. Symbolic infotoa manipulation,
such as dragging an icon representing a file taghtcan for deleting,
IS intuitively very appealing and the user cananliy remember it.

» A GUI usually supports command selection using #@racive and
user-friendly menu selection system.

» In a GUI, a pointing device such as a mouse ogl# [pen can be used
for issuing commands. The use of a pointing dewsteases the
efficacy of the command issue procedure.

» A GUI flip side, a GUI requires special terminaldgthwgraphics
capabilities for running and also requires speaialit devices such as

a mouse.

Text Based Interface

Text based interface only use text, symbols anducslavailable on a given
text environment. Text- based user interface caimpéemented on a cheap

alphanumeric display terminal.

Copy Right DTE&T, Odisha Page 100

Chapter -6
Understanding the Principlesof Software Coding

6.1 Coding standards and guidelines.

6.2 Code walk through.

6.3 Code inspections and software documentation.

6.4 Distinguish between unit testing integratiostitegy and system testing.

6.5 Unit testing.

6.6 Methods of black box testing.

6.7 Equivalence class partitioning and boundaryeanalysis.

6.8 Methodologies for white box testing.

6.9 Different white box methodologies statementetage branch coverage,
condition coverage, path coverage, data thased testing and mutation
testing.

6.10 Debugging approaches.

6.11 Debugging guidelines.

6.12 Need for integration testing

6.13 Compare phased and incremental integratidimges
6.14 System testing alphas beta and acceptancetest
6.15 Need for stress testing and error seeding.

6.16 General issues associated with testing.

6.1 Coding Standards and Guidelines

Good software development organizations developr tleevn coding
standards and guidelines depending on what besttheir needs and types

of products they develop.
Representative coding standards are:

Rules for limiting the use of global: These rules list what types of data can

be declared global and what cannot.

Contents of the headers preceding codes for diffené modules: The
information contained in the headers of differemidiies should be standard

for an organization. The exact format in which theader information is

Copy Right DTE&T, Odisha Page 101

organized can also be specified. Some standarchdath are:

a) Name of the module

b) Date on which the module was created

c) Author's name

d) Modification history

e) Synopsis of the module

f) Different functions supported along with theinput/output parameters
g)Global variables accessed / modified by the mexlul

Naming conventions for global variables, local vaables and constants
identifiers: A possible naming conventions can be that gloaabble names
always start with a capital letter, local variabkmes are small letters, and
constant names are always capital letters.

Error return conventions and exception handling mebanisms: The way
error conditions are reported by different function a program and the way
common exception conditions are handled should tadard within an

organization.
6.2 Code Walk-Through

The main objective of code walk-through is to dismothe algorithmic and

logical errors in the code. Code walkthrough isimiormal code analysis
technique.

In this technique, after a module has been codesl,successfully compiled
and all syntax errors are eliminated. Some memieitse development team
are given the code a few days before the walk-tjinomeeting to read and
understand the code. Each member selects someasss and simulates
execution of the code through different statemantsfunctions of the code.

Even though a code walkthrough is an informal asialyechnique, several
guidelines have evolved for making this techniqueereffective and useful.

Some guidelines are:

Copy Right DTE&T, Odisha Page 102

® The team performing the code walkthrough shouldogotither too big or
too small. Ideally, it should consist of threeseven members.
» Discussions should focus on discovery of errorsrastdon how to fix

the discovered errors.

6.3 Code Inspection and Software Documentation

Code Inspection

The principal aim of code inspection is to check tlie presence of some
common types of errors caused due to oversightraptbper programming.
Some classical programming errors which can be kdteauring code

inspection are:

v' Use of uninitialized variables

v' Jumps into loops

v" Non-terminating loops

v’ Array indicates out of bounds

v Improper storage allocation and deallocation
v Use of incorrect logical operators

v Improper modification of loop variables

v' Comparison of equality of floating point values.

Software Documentation’

Different kinds of documents such as user's maragtyare requirements
specification (SRS) document, design document,destiment, installation
manual are part of the software engineering prod8s®d documents are

very useful and serve the following purposes:

> Good documents enhance understandability and nrzabiaty of a
software product. They reduce the effort and timequired for

maintenance.

Copy Right DTE&T, Odisha Page 103

> Good documents help the users in effectively exiplpithe system.

> Good documents help in effectively overcoming thenpower turnover
problem. Even when an engineer leaves the orgamizahe newcomer

can build up the required knowledge quickly.

> Good documents help the manner in effectively tragkhe progress of
the project.
Different types of software documents can be broaldissified into:
o Internal documentation
0 External documentation
Internal Documentation
Internal documentation is the code comprehensiatufes provided in the
source code itself. Internal documentation can liged in the code in
several forms. The important types of internal doentation are:
% Comments embedded in the source code
% Use of meaningful variable names
% Module and function headers
% Code structuring (i.e. Code decomposed into modanesfunctions)

» Use of constant identifiers

** Use of user-defined data types

External documentation

External documentation is provided through varidyses of supporting
documents such as users' manual, software requitemgpecification
document, design document, test document etc. Aersydic software
development style ensures that all these documar@sproduced in an
orderly fashion.

An important feature of good documentations coaasy with the code.
Inconsistencies in documents creates confusiomaerstanding the product.

Also, all the documents for a product should be¢aidate.

Copy Right DTE&T, Odisha Page 104

6.4 Distinguish among Unit Testing, Integration Teting, and
System Testing

A software product is normally tested in the thimesls:

» Unit testing

* Integration testing

» System testing
A unit test is a test written by the programmevéafy that a relatively small
piece of code is doing what it is intended to dbeyl are narrow in scope,
they should be easy to write and execute, and #ffactiveness depends on
what the programmer considers to be useful. This te® intended for the
use of the programmer. Unit tests shouldn't hayeen@encies on outside

systems.

An integration test is done to demonstrate thdedht pieces of the system
work together. Integration tests cover whole agpions, and they require
much more effort to put together. They usually mguesources like
database instances and hardware to be allocatethdor. The integration
tests do a more convincing job of demonstratingsiistem works (especially
to non-programmers) than a set of unit tests .

System tests test the entire system. It is sedsdfdarried out by test engineer
against the software(system) developed by develdpesystem testing the
complete system is configured in a controlled emvinent and test cases are
created to simulate the real time scenarios thatrsan a simulated real life
test environment. The purpose of system testirig i&lidate an application
and completeness in performing as designed anestoatl functions of the
system that is required in real life. the most pap@approach of system

testing is Black Box testing.

Copy Right DTE&T, Odisha Page 105

6.5 Unit Testing

Unit testing or module testing of different units modules of a system in

isolation.

O O
o 00 O
o O O

Fig. 6.1 Unit testing

Unit testing is undertaken when a module has beeledc and successfully
reviewed. The purpose of testing is to find and aeenthe errors in the
software as practical. The numbers of reasonsppat of unit testing are:
» The size of a single module is small enough thatcare locate an
error fairly easily.
» Confusing interactions of multiple error is widelifferent parts of
the software are eliminated.
Driver and Stub Modules
In order to test a single module, we need a commatvironment to provide
all that is necessary for execution of the modwe. will need the following
in order to be able to test the module:
0 The procedures belonging to other modules thatntioglule
under test calls.
o Nonlocalb data structures that the module accesses.
0 A procedure to call the function of the module untst with

appropriate parameters.

Copy Right DTE&T, Odisha Page 106

Stubs and drivers are design to provide the coméeta module.

Driver Module

l Global Data

Module under test };

A 4

Stub Module

Fig. 6.2 Unit testing with the help of driverdastub module

A stub procedure is a dummy procedure that hasdhee I/O parameters as
given procedure but has a highly simplified beharicA driver module
would contain the no local data structure accebgetthe module under test,
and would also have the code to call the diffefenction of the module with
appropriate parameter values.

6.6 Methods of Black —Box Testing

In the black-box testing, test cases are desigm fam examination of the
input/output values only and no knowledge of desigrcode is required.
Two main approaches to design black-box test cases

+ Equivalence class Partitioning

+ Boundary value analysis

Copy Right DTE&T, Odisha Page 107

6.7 Equivalence class Partitioning and Boundary Vale
Analysis

Equivalence Class Partitioning

In the equivalence class partitioning approacé,dbmain of input values to
a program is partitioned into a set of equivaleclesses. The partitioning is
done such that the behavior of the program is amih every input data
belonging to the same equivalence class. The ndaia Ibehind defining the
equivalence classes is that testing the code wiyhoae value belonging to
an equivalence class is as good as testing theaeftwith any other value
belonging to that equivalence class. Equivalenasses for a software can be
designed by examining both the input and outputa.d&uidelines for
designing the equivalence classes are:
1) If the input data values to a system can be sgekcby a range of values,

then one valid and two invalid equivalence clastesild be defined.
i)If the input data assumes values from a setisfrdte members of some
domain, then one equivalence classes for validtimplues and another for
invalid input values should be defined.
Example — Suppose we have to develop a softwatectra calculate the
square root of an input integer . The value ofititeger lies between 0 and
5000.
As the input domain of such software is 0 to 5&a0the equivalence class
Of the software will be 0 to 5000 .This equivalemta&ss can be partitioned
into the following three equivalence classes

1. equivalence classes 1-The input integers whosee\via less then

0.(invalid)
2. equivalence classes 2-The input integers whoses\la@s between 0
and 5000.(valid)

Copy Right DTE&T, Odisha Page 108

3. equivalence classes 3- The input integers whosagevial greater than
5000.(invalid).

So accordingly the following test cases are design

Test casel=(-5,3000,7001), Test case2=(-20,100)5050

Test case3=(-6,4000,9000)

Boundary Value Analysis

Boundary Value Analysis concentrates on the bemai the system on its
boundaries of its input variables. The boundaryaofariable includes the
maximum and the minimum valid value it is allowethi in the system. It
may be an input or output or even some internalréubr variable of the
system that captures some information of the sysBshavior of the system
at its boundaries is tested under boundary valadysis. Boundary value
analysis-based test suite design involves desigesigcases using the values
at the boundary of different equivalence classes.

EX:-For the above software that calculates the squ@ot of integer values
in the range between 0 and 5000 the test caseecdadigned as follows i.e.
{0,-1,5000,5001}

Summary of the Black-box test suite Design

» Examine the input and output values of the program.
» ldentify the equivalence classes.
* Pick the test cases corresponding to equivalenass desting and

boundary value analysis.

6.8 Methodologies for White —Box Testing

White —Box testing is also known as transparestirtg. It is a test case

design method that uses the control structure efpiocedural design to

Copy Right DTE&T, Odisha Page 109

derive test cases. It the most widely utilized uegting to determine all
possible path with in a module, to execute all bakd to test all logical
expressions. This form of testing concentrate acgaural detail.
The general outline of the white-box testing predss

s Perform risk analysis to guide entire testing

process.
+» Develop a detailed test plan that organizes thesexyuence testing
process.
« Prepare the test environment for test execution.
%+ Execute test cases and communicate the results.

*» Prepare a report

6.9 Different white box methodologies: statement e®rage
branch coverage, condition coverage, path coveragdata flow
based testing and mutation testing

Statement Coverage

This statement coverage strategy aims to designceeses so that every
statement in a program is executed at least onte {rinciple idea
governing the statement coverage strategy is tinéss a statement is
executed there is no way to determine whether f@m exist in that statement
unless a statement is executed, we cannot obsdwether it causes failure

due to some illegal memory access, wrong resulipcation etc.

Copy Right DTE&T, Odisha Page 110

Example:
Consider Euclid’'s GCD computation algorithm:

Int compute_gcd(X,y)

Int x,y;
{
1 While (x '=y){
2 If (x >y) then
3 X=X-Y,
4 elsey=y-—x;
5 }
6 return Xx;
}
Design of test cases for the above program segment
Test casel at&nent executed
X=5,y=5 1,5,6
Test case2 at&nent executed
x=5,y=4 1,2,3,5,6
Test case3 at&nent executed
x=4,y=5 1,2,4,5,6
so the test set of the above algorithm will be

{(x=5,y=5),(x=5,y=4),(x=4,y=5)}.

Branch Coverage

In the branch coverage-based testing strategy,ceeses are designed to
make each branch condition assume true and falkee va turn. Brach
testing is also known as edge testing, which isngger than statement

coverage testing approach.

Copy Right DTE&T, Odisha Page 111

Example : As the above algorithm contains two k@rgtatements such as
while and if statement, so this algorithm has twmnber of branches. As
each branch contains a condition, therefore eaahchrshould be tested by
assigning true value and false value respectivety four number of test

cases must be designed to test the branches.

Test casel X=6,y=6
Test case2 X=6,y=7
Test case3 xX=8,y=7
Test case4d xX=7,y=8
so the test set of the above algorithm will be

{(x=6,y=6),(x=6,y=7),(x=8,y=7),(x=7,y=8)}.

Condition Coverage

In this structural testing, test cases are desitmesbke each component of a
composite conditional expression assumes both d@nge false values. For
example, in the conditional expression ((8ND C,) OR G), the
components ¢C, andG are each made to assume both true and false values
Condition testing is a stronger testing strategnthranch testing and branch
testing is a stronger testing strategy than théerskant coverage- based
testing.

Path Coverage

The path coverage-based testing strategy requesigiing test cases such
that all linearly independent paths is the progeam executed at least once.
A linearly independent path can be defined in #rens of the control flow
graph (CFG) of a program.

Control Flow Graph (CFG)

A control flow graph describes the sequence in fwhibe different
instructions of a program get executed. The floapd is a directed graph in

which nodes are either entire statement or fragsnagind statement and edges

Copy Right DTE&T, Odisha Page 112

represents flow of control. An edge from one noaoleamother exists if the
execution of the statement representing the fiedencan result in the
transfer of control to the other node.

A flow graph can easily be generated from the adfdsny problem.

Fig. 6.3 Control Flow Graph

int computer_gcd(int x, inty) {

1 while(x!=y) {

2 if(x>y) then
3 X=X-Y;

4 Else y-y-x;
5 |}

6 Return x;

Copy Right DTE&T, Odisha Page 113

Path

A path through a program is a node and edge sequssma the starting node
to a terminal node of the control flow graph of ragram.. A program can
have more than one terminal nodes when it contamn$iple exit or return

type of statements.

McCabe’s Cyclomatic Complexity Metric
Cyclomatic complexity defines an upper bound on thember of
independent paths in a program.
Given a control flow graph G of a program. Each enaaf the graph
represents a command or a statement of the proguadh each edge
represents the flow of execution between statenmaniedes. For a control
flow graph with E number of edges and N number afes, the cyclomatic
complexity can be computed as

M=E-N+2P

Where P is the number of connected componeriteigraph.
Control flow graph of a sequential program is @Ercomponent graph.
Hence, for any sequential program

M=E-N+2

Copy Right DTE&T, Odisha Page 114

Example:

Fig. 6.4 Control Flow Graph

Number of Edges =E =7
Number of Nodes =N =6
The value of cyclomatic complexity is

V(G)= E-N+2
=7-6+2
=3
Data Flow — Based Testing

The data flow — based testing method selects thiep@ths of a program
according to the location of the definitions ané o$ the different variables

in a program.

Copy Right DTE&T, Odisha Page 115

Consider a program P. For a statement numberedSlef
DEF (S) = {X | Statement S contains a definitiorXyf and

USES (S) = {X| Statement S contains a use of X}

For the statement S: a = b+c ; DEF (S) ={ a}, USES{{b,c}

The definition of variable X at statement S isddai be live at statement SI,
If there exist a path from statement S to staterBénthich doesn’t contain
any definition of X.

Mutation Testing

In mutation testing, the software is first testgdusing an initial test suite
built of from different white — box testing strateg. After the initial testing
Is complete, mutation testing is taken up. The igelsind mutation testing is
to make a few arbitrary changes to a program atme.tEach time the
program is changed, it is called a mutated progaachthe change effected is
called a mutant. A mutated program is tested agé#uesfull test suite of the
program. If there exists at least one test casmentest suite for which a
mutant gives an incorrect result, then the mutansaid to be dead. If a
mutant remains alive even after all the test chse® been exhausted, the
test data is enhanced to kill the mutant.

A major disadvantage of the mutation — based tgsijoproach is that it is
computationally very expensive since a large nunatb@ossible mutants can
be generated.

Since mutation testing generates large mutantseqndres us to each mutant
with the full test suite. It is not suitable for maal testing.

Debugging

Once errors are identified, it is necessary td fosate the precise program

statements responsible for the errors and thein tdm.

Copy Right DTE&T, Odisha Page 116

6.10 Debugging Approaches

a. Buffer Force Method
This is the most common method of debugging, buihés least efficient
method. In this approach, the program is base pvitit statement to print the
intermediate values with the hope that some ofptieed values will help to
identify the statement in error. This approach bee® more systematic with
the use of a symbolic debugger because the vafudiferent variables can
be easily checked.
b. Backtracking
In this approach, beginning from the statementlativan error symptom is
observed, the source code is traced backwardstheatérror is discovered.
c. Cause Elimination Method
In this approach, a list of causes which couldsgdg have contributed to
the error symptom is developed and tests are abadiio eliminate each
cause.
d. Program Slicing
This technique is similar to back tracking. Howevire search space is
reduced by defining slices.
6.11 Debugging Guidelines

» Debugging is often carried out by programmers basad their

ingenuity.
» Many a times, debugging requires a thorough unaledstg of the
program design.
» Debugging may sometimes even require full redesfghe system.
» One must be beware of the possibility that any emer correcting

many introduce new errors.

Copy Right DTE&T, Odisha Page 117

6.12 Need for Integration Testing

The objective of integration testing is to test thedule interfaces in order to
ensure that there are no errors in the paramessimqp when one module
invokes another module. During integration testthfjerent modules of a
system are integrated in a planned manner usingntagration plan. The
integration plan specifies the steps and the omdewhich modules are
combined to realize the full system. After eaclegnation step, the partially

integrated system is tested.
> %
oo

Fig.6.5Integration Testing

Anyone or a mixture of the following approaches banused to develop the
test plan:

Big — bang approach

Top — down approach

Bottom — up approach

©O O O o

Mixed approach

0 Big - bang approach
Big — Bang Approach
In this approach, all the modules of the systeensamply put together and
tested. This technique is practicable only for $nsglstems. The main
problem with this approach is that once an errorfognd during the
integration testing, it is very difficult to locak the error as the error may
potentially belong to any of the modules beinggné¢ed. Debugging errors
reported during big—bang integration testing amy egpensive.

Copy Right DTE&T, Odisha Page 118

Top — Down Approach

Top — down integration proceeds down the invocali@marchy, adding are
module at a time until an entire tree level is gnéded and it elements the
need for drivers.

In this approach testing can start only after thyelevel modules have been
coded and unit tested.

A disadvantage of the top- down integration testpgroach is that in the
absence of lower —level routines , many times iy rhacome difficult to
exercise the lower-level routines, many times ity rh@come difficult to
exercise the top- level routines in the desiredmeasince the lower — level
routines perform several low level functions such

Bottom — up Integration Testing

In bottom-up testing, each subsystem is testedratghya and then the full
system is tested. A subsystem might consist of mamdules which
communicated among each other through well- defimterfaces. The
primary purpose of testing each subsystem is tb thes interface among
various modules making up the subsystem. Both cbatrd data interfaces
are tested. Advantages of bottom — up integratestirtg is that several
disjoint subsystems can be tested simultaneously.

A disadvantage of bottom — up testing is the comipleoccurs when the

system is made up of a large number of small st
Mixed Integration Testing
A mixed(also called sandwiched) integration tesfolgpws a combination of

top — down and bottom — up testing approachesitapproach testing can

start as and when modules become available.

Copy Right DTE&T, Odisha Page 119

6.13 System Testing: Alphas, Beta and Acceptanckesting

System tests are designed to validate a fully dgesl system to assure that
it meets its requirements. Three kinds of systestirtg are:

* Alphatesting

* Betatesting

* Acceptance testing
Alpha Testing
Alpha testing refers to the system testing caraetiby the team within the
developing organization.
Beta testing
Beta testing is the system testing performed bylact group of friendly
customers.
Acceptance Testing
Acceptance testing is the system testing perfordogdthe customer to
determine whether to accept or reject the delieéthe system.

The system test cases can be classified into famadity and _performance

test caseThe functionality test are designed to check waethe software
satisfies the functional requirements as documeitetie SRS document.
The performance tests test the conformance of & system with the

nonfunctional requirements of the system.

Performance Testing

Performance testing is carried out to check whetmeisystem meets the non
— functional requirements identified in the SRS woent. The types of
performance testing to be carried out on a systepend on the different
nonfunctional requirements of the system documerthe SRS document.

All performance tests can be considered as bldmkx-tests.

Copy Right DTE&T, Odisha Page 120

6.15 Need for Stress Testing and Error Seeding

Stress Testing

Stress testing is also known as endurance tesHtrgss testing evaluated
system performance when it is stressed for sharmbge of time. Stress tests
are black — box tests which are designed to imposange of abnormal and
even illegal input conditions so as to stress thgabilities of the software.
Input data volumes, input data rate, processing,tiatilization of memory
are tested beyond the designed capacity.

Stress testing is especially important for systéinat usually operate below
the maximum capacity but are severely stressedna¢ peak demand hours.
Example : If the nonfunctional requirement speation states that the
response time should not be more than 20 secondsgosaction when 60
concurrent users are working, then during thessttesting the response

time is checked with 60 users working simultangous

Volume Testing

Volume testing checks whether the data structubeffgrs, arrays, queues,
stacks etc.) have been designed to successfullydidaaxtraordinary

situations.

Example : A compiler might be tested to check whetthe symbol table
overflows when a very large program is compiled.

Configuration Testing

Configuration testing is used to test system beirawi various hardware and
software configuration specified in the requirensent

Compatibility Testing

This type of testing is required when the system interfaces with external

systems such as databases, servers etc. Compatibility aims to check

Copy Right DTE&T, Odisha Page 121

whether the interface functions perform as required. For instance, if the
system needs to communicate with a large database system to retrieve
information, compatibility testing is required to test the speed and
accuracy of data retrieval.

Regression Testing

Regression testing is performed in the maintenanwcdevelopment phase.
This type of testing is required when the systemdéeested is an upgradation
of an already existing system to fix some bugs mhaace functionality,
performance etc.

Recovery Testing

Recovery testing tests the response of the sysidimetpresence of faults or
loss of power, devices, services data etc. For pkanthe printer can be
disconnected to check if the system hangs.

Maintenance Testing

Maintenance testing addresses the diagnostic pregeand other procedures
that are required to be developed to help implenteatmaintenance of the
system.

Documentation Testing

Documentation is checked to ensure that the redjuwser manual,
maintenance manuals and technical manuals existr@ncbnsistent.

Usability Testing

Usability testing pertains to checking the useerface to see if it meets all
the user requirements. During usability testing, display screens, messages,
report formats and other aspects relating to tlee im¢erface requirements are
tested.

Error Seeding

Error seed can be used to estimate the numbesiofuad errors in a system.
Error seeding seeds the code with some known effbiesnumber of seeded

error detected in the course of standard testimgauure is determined.

Copy Right DTE&T, Odisha Page 122

These values in-conjunction with the number of edse errors can be used
to predict:

1)The number of errors remaining in the product

i) The effectiveness of the testing method

Let n be the total number of errors in the systanh lat “n” number of these
errors are detected during testing.

Let “S” be the total number of seeded errors anddébe the number of
these errors are detected during testing.

n/N =s/S

=>N=S*n/s

=> (N-n) = n(S-s) /S

6.16 General Issues Associated with Testing

Some general issues associated with testing

I)Test documentation

i) Regression testing
Test Documentation
A piece of documentation which is generated towd#ndsend of testing is
the test summary report. The report normally coeash subsystem and
represents a summary of tests which have beeredpplithe subsystem. It
will specify how many tests have been applied teuasystem. It will
specify how many tests have been successful, howy niieve been
unsuccessful, and the degree to which they have lnesiccessful.
Regression Testing
Regression testing does not belong to either astirtg, integration testing
or system testing. Regression testing is the maadf running an old test
suite after each change to the system or after leagliix to ensure that no

new bug has been introduced as a result of thisgehmade or bug fixed.

Copy Right DTE&T, Odisha Page 123

Chapter-7
Understanding the | mportance of W Reliability

7.1 Importance of software reliability
7.2 Distinguish between the different reliabilitgtrics.
7.3 Reliability growth modeling.
7.4 Characteristics of quality software.
7.5 Evolution of software quality management system
7.6 Importance, requirement and procedure to g&0Q 19000
certification
for software industry.
7.7 SEI capability maturity model.

7.8 Compare between ISO 9000 certification

7.1 Importance of Software Reliability

Reliability of a software product can be definesl the probability of the
product working correctly over a given period whe. A software product
having a large number of defects is unreliable.igRdity of a system
improves it the number of defects in it is reducHde reliability of a product
depends on the both the number of errors and thet écation of the errors.
Reliability also depends upon how the produatsed (i.e. on its execution
profile). Different users use a software prodadlifferent ways. So defects
which show up for one user may not show up fmtlaer user.

Software Reliability and Hardware Reliability

Reliability behavior for hardware and software ery different. Hardware
failures are due to component wear and tear. dvare failure occurs one
has to either replace or repair the failed partscitware product would
continue to fail until the error is tracked downdagither the design or the
code is changed. For this reason, when level thigtegl before the failure
accrued, whereas when a software failure is regpaihe reliability nay either
increase or decrease.

There are three phases in the life of any hardwamponent i.e. burn in,
useful life and wear out.

In burn in phase, failure rate is quite high ifijiaas it starts decreasing as
the faulty components are identified and removdte 3ystem then enters its
useful life.

During useful life period, failure rate is approxtaly constant. Failure rate
Increases in wear- out phase due to warning oupoosnts. The best period
Is useful life period. The shape of this curve atts tub” and it is also
known as both tub curve.

For software the failure rate is highest duringgmation and testing phases.
During the testing phase more and more errors @geatified and moved
resulting in a reduced failure rate. This errommoeal continues at a slower
speed during the useful life of the product. Assb#tware becomes absolute,

no more error correction occurs and the failure ratains unchanged.

7.2 Distinguish between the Different Reliability Metrics

The reliability requirements for different categgsiof software products may
be different for this reason, it is necessary thatlevel of reliability required
for a software product should be specialized in $®S document. Some
reliability metrics which can be used to quantitg treliability of software
products are:
» Rate of Occurrence of Failure (ROCOF)

ROCOF measures the frequency of occurrence of @wotsg behaviour (i.e.
failures). The ROCOF measure of a software prodact be obtained by
observing the behaviour of a software product ierapon over a specified
time interval and then calculating the total numbérfailures during this

interval.

Copy Right DTE&T, Odisha Page 125

> Probability of Failure ON Demand (POFOD)
POFOD measures the likelihood of the system falumen a service request
Is made. For example a POFOD of 0.001 would meah thout of every
1000 service requests would result in a failure.
> Availability
Availability of a system is a measure of how hkelill the system be
available for use over a given period of time. Tinistric not only considers
the number of failures occurring during a time mé, but also takes into
account the repair time (downtime) of a system whefailure occurs. In
order to intimately, it is necessary to classifyi@as types of failures.
Possible classifications of failures are:
Transient: Transient failures occur only for certain inputues while
invoking a function of the sy®.
Permanent: Permanent failures occur for all input values wimivoking a
function of the system.
Recoverable:When recoverable failures occur, the system resowéh or
without operator intervemtio
Unrecoverable:In unrecoverable failures, the system may neecto b
restarted.
Cosmetics:These classes of failures cause only minor imomgt and do
not lead to incorrect results.
Mean TIME TO Failure (MTTF)
MTTF is the average time between two successiverés, observed over a
large number of failures. To measure MTTF, we eord the failure data
for n failures.
Mean Time to Repair (MTTR)
Once failure occurs, some time is required totix €rror. MTTR measures
the average time it takes to track the errors ogufie failure and then to

fix them.

Copy Right DTE&T, Odisha Page 126

Mean Time Between Failures (MTBF)
MTBF = MTTF+MTTR

Thus, MTBF Of 300 hours indicates that once a failaccurs, the next
failure is expected to occur only after 300 hoursthis case, the time
measurements are real time and not the executi@stas in MTTF.
Software Quality
The objective of software engineering is to praedgood quality
maintainable software in time and within buddétat is a quality product
does exactly what the users want it to do. Theenogiew of quality
associates a software product with several fastoch as:

Portability

A software product is said to be portable, if ihdze easily made to work in
different operating system environments in différamachines with other
software products etc.

Reusability

A software product has good reusability, if diéfiet modules of the product
can easily be reused to develop new product.

Correctness
A software product is correct, if different reqnments as specified in the
SRS document have been correctly implemented,

Maintainability
A software product is maintainable, if errors ¢eneasily corrected as and
when they show up , new functions can be eadilied to the product and

the functionality of the product can be easily ified etc.
7.3 Reliability Growth Modeling

A reliability growth model is a mathematical modet how
software reliability improves as errors are detdadnd repaired. A

reliability growth model can be used to predict whee particular

Copy Right DTE&T, Odisha Page 127

level of reliability is likely to be attained. Thuseliability growth

modeling can be used to determine when to stomtesi attain a
given reliability level. Two very simple relialdjyt growth models
are :

Jelinski and Moranda Model

The simplest reliability growth model is a stegndtion model
where it is assumed that the reliability increabgsa constant
increment each time an error is detected and regbaitowever this
simple model of reliability which implicitly assurmehat all errors

contribute equally to reliability growth, is highilynrealistic.

ROCOF

v

Time

Fig.7.1 Step function model of relidyp growth

Littlewood and Verall's Model

This model allows for negative reliability growtih teflect the fact that when
a repair is carried out, it may introduce addiéoerrors. It also models the

fact that as errors are repaired, the average wepment in reliability per
repair decreases. It treats an error's contributaeliability improvement to

be an independent random variable having gammaibdiBon. This

Copy Right DTE&T, Odisha Page 128

distribution models the fact that error correctionith large contributions to
reliability growth are removed first. This repregendiminishing return as

test continues.

7.4 Characteristics of Quality Software

The objective of software engineering is to produgeod quality
maintainable software in time and within budgetaflts, a quality product
does exactly what the users want it to do. The mmodeew of quality
associates a software product with several quidiors such as :
Portability: A software product is said to be portable, if @ncbe easily
made to work in different operating system envirents, in different
machines, with other software products etc.

Usability: A software product has good usability, if differerategories of
users can easily invoke the functions of the praduc

Reusability: A software product has good reusability, if difiet modules of
the product can easily to develop new products.

Correctness: A software product is correct, if different reqemments as
specified in the SRS document have been correuiyemented.
Maintainability: A software product is maintainability, if error@rc be
easily corrected as and when they show up, newtiumsc can be easily
added to the product, and the functionalities of ftroduct can easily
modified, etc.

7.5 Evolution of Software Quality Management Sstem
Software Quality Management System

Issues associated with a quality system are:
. Management structural and individual responsibilites
A quality system is actually the responsibility thfe organization as a

whole.

Copy Right DTE&T, Odisha Page 129

However, many organization have a separate quagpartment to perform
several quality system activities. The quality tegs of an organization
should have the support of the top management

* Quality system activities

= Auditing of the projects

» Review of the quality system

» Development of standards, procedures and guiceéte

» Production of reports for the top managementrsanzing
the effectiveness of the quality system in the oizgtion.

A good quality system must be well documented.

Evolution of Quality Systems

Quality system have rapidly evolved over tret tadecades. The quality
systems of organisation have undergone thrdugflages of evolution as :

Quiality Assurance Method Quality Paradigm

Inspection Product assurance

Quallity Control(QC)

uality Assurance
Q y Process Assurance

Total Quality
Management(TQM)

Fig. 7.2Evolution of quality system and the coramsfing shift in the
quality paradigm.

 Quality control focuses not only on detecting trefedtive product &

eliminating them. But also on determining the causehind the defects.

Copy Right DTE&T, Odisha Page 130

* The quality control aims at correcting the causésrmors & not just
rejecting the defective products.
The basic premises of modern quality assurand®aisiftan organizations
processes are good and are followed rigorously thenproducts are
bound to be of good quality.
The modern quality paradigm includes some guiddocerecognising,
defining, analysing & improving the production pess.
Total quality management (TQM) says that ttezess followed by an

organisation must be continuously improve digltoprocess measurement.

7.6 Importance, Requirement and Procedure to Gain 3O
9000 Certification for Software Industry

ISO (International Standards Organization) ¢®asortium of 63 countries
established to formulate and foster standatidisalSO published its 9000
series of standards in 1987.

The ISO 9000 standard specifies the guidelioemaintaining a quality
system. ISO 9000 specifies a set of guidelioesepeatable and high
quality product development.

ISO 9000 is a series of three standards: 1S2 9GO 9002, and 1SO
9003.

ISO 9001: This standard applies to the orgéaniss.engaged in design,
development, production, and servicing of godthss standard is
applicable to most software development orgdiuss.

ISO 9002: This standard applies to those osgdions which do not
design products but are only involved in prdotut Examples include
steel and car \ manufacturing industries.

ISO 9003: This standard applies to organisationolved only in

installation and testing of the products.

Copy Right DTE&T, Odisha Page 131

Requirement of ISO 9000 Certification

+ Confidence of customers in an organisation increasben the
organisation qualifies for ISO 9001 certification.

+ 1SO 9000 requires a well-documented software proolu@rocess.

s ISO 9000 makes the development process focusedieaff and
cost-effective.

+ 1SO 9000 certification points out the weak point@o organization
and recommends remedial action.

+ 1SO 9000 sets the basic framework for the developnu an

optimal process.

Procedure to gain ISO 9000 Certification

An organisation intending to obtdi®O 9000 certification applies to a ISO

9000 registrar for registration. The 1ISO 900§isation process consists
of the following stages:

= Application: Once an organisation decides to go O 9000
certification, it applies to a register for regagion.

» Pre-assessment. During this stage, the registraakesn a rough
assessment of the organisation.

» Document Review and Adequacy of Audit : Duringstistage, the
registrar reviews the documents submitted by thgamsation and
makes suggestions for possible improvements.

» Compliance audit: During this stage, the registta@cks whether the
suggestions made by it during review have been tethpith by the
organisation or not.

= Continued Surveillance: The registrar continues rwnitorthe

organisation, though periodically.

Copy Right DTE&T, Odisha Page 132

7.7 SEI Capability Maturity Model (SEI CMM)

SEI Capability Maturity Model was proposed by Safter Engineering
Institute of the Carnegie Mellon University, USAEISCMM classifies
software development industries into the followfnhge maturity levels. The
different levels of SEI CMM have been designed Isat it is easy for an
organization to slowly build its quality system begng from scratch.

Level 1: Initial. A software development organipati at this level is
characterized by ad hoc activity. Very few or nogasses are defined and
followed. Since software production processes avk defined, different
engineers follow their own process and as a rdheltdevelopment efforts
become chaaotic. It is called chaotic level.

Level 2: Repeatable. At this level, the basic pprbj@management practices
such as tracking cost and schedule are establi§heel.and cost estimation
techniques like function point analysis, COCOMQ ete used.

Level 3: Defined. At this level, the processes fmth management and
development activities are defined and documenidgkre is a common
organization-wide understanding of activities, soad responsibilities. The
processes though defined, the process and the giraplalities are not
measured. I1SO 9000 aims at achieving this level.

Level 4. Managed: At this level, the focus is software metrics. Two
types of metrics are collected. Product metricssueathe characteristics of
the product being developed, such as its sizealiéity, time complexity,
understandability etc. Process metric reflect tifieceveness of the process
being used, such as the average defect correatime fproductivity, the
average number of defects found per hour of ingpecthe average number
of failures detected during testing per LOC, andosth

Level:5 Optimizing: At this stage, the process ahd product metrics are

collected. Process and Product measurement dataralyzed for continuous

process improvement.

Copy Right DTE&T, Odisha Page 133

7.8 Compare between ISO 9000 Certification and SEIMM

¢ ISO 9000 is awarded by an international standaoti/.b ISO 9000
certification can be quoted by an organization fiicial documents.
However, SEI CMM assessment is purely for intecrsa.

¢ SEI CMM was specifically developed for softwareustty alone.

¢+ SEI CMM goes beyond quality assurance and premar@sganization
to ultimately achieve TQM. ISO 9000 aims at levebf3SEI/CMM
model

Copy Right DTE&T, Odisha Page 134

Chapter-8

Understanding the Computer Aided Software
Engineering (CASE)

8.1 Briefly explain CASE benefits of CASE.

8.2 Briefly explain the building blocks for CASE
8.3 CASE support in software life cycle

8.4 List the different CASE tools.

8.1 Briefly explain CASE benefits of CASE.

8.1 Briefly Explain CASE Benefits of CASE

The term “Computer-Aided Software Engineering “cafer to the software
used for the automated development of system smdtiwa. computer code.
The CASE functions include analysis, design andjanmming. CASE tools
automate methods for designing, documenting andlyamiog structured
computer code in the desired programming langulsigely CASE tools are
now available. Some CASE tools assist in phasdeetldakes such as
specification, structured analysis, design , coditagting etc. and some other
CASE tools are related to non-phase activities saglproject management
and configuration management. The primary objestiwkedeploying CASE

tools are
* To increase productivity
» To produce better quality software at lower cost
Two key ideas of computer-aided software systemri&aging are :

» The harboring of computer assistance in softwakeldpment and or

software maintenance process.

Copy Right DTE&T, Odisha Page 135

* An engineering approach to the software developmand or
maintenance.

Some typical CASE tools are
» Configuration management tools

» Data modeling tools

* Model transformation tools

* Program transformation tools

* Source code generation tools

» Unified modeling language
CASE Environment

CASE tools are a class of software that automatasynof the activities
involved in various life cycle phases. Since CASEvienments are

classified based on the focus :

» Toolkits

* Language-centered

* Integrated

* Fourth generation

* Process-centered
Since different tools covering different stagesreh@mmon information. It
Is required that they integrate through some ckmépository to have a

consistent view of information associated with so&ware.

This central repository is usually a data dictigneontaining the definitions
of all composite and elementary data items. Throinghcentral repository,
all the CASE tools in a CASE environment share comnmformation

among themselves. Thus a CASE environment faallititee automation of

the step-by-step methodologies for software deweéop.

Copy Right DTE&T, Odisha Page 136

In contrast to a CASE environment a programmingirenwment is an

integrated collection of tools support only the iogdphase of software

development. The tools commonly integrated in @m@mming environment

are a text editor, a compiler and a debugger. Tifereint tools are integrated

to the extent that once the compiler detects aor,etiie editor automatically

goes to the statements in error and the errormsétes are highlighted.

Examples of programming environments are Turbo @renment, Visual

Basic, Visual c++ etc.

Coding support
activities

Consistency and

N

completeness “ | Ccentral
analysis repository
Document /
generation

Project
management
facilities

Prototyping

Configuration
management
facilities

‘\

Structured
diagram facilities

Structured

analysis facilities Transfer facilities
in different
formats

facilities

Query and report

Fig.8.1 A CASE environment

Copy Right DTE&T, Odisha

Page 137

Benefits of CASE

* A key benefit arising use of a CASE environmentcast saving
through all development phases.

» Use of CASE tools leads to considerable improvemenguality.

» CASE tools help produce high quality and consistdument since
the important data relating to a software produet maintained in a
central repository, redundancy in the stored datareduced and
therefore chances of inconsistence documentat®mneaiuce to a great
extent.

» CASE tools have led to drudgery in a software eagits work.

« CASE tools have led to revolutionary cost savings software
maintenance efforts.

» Use of a CASE environment has an impact on the stivorking of a

company, and makes it conscious of structured amherly approach.

8.2 Briefly Explain the Building Blocks for CASE

CASE tools

Integration framework

Portability services

Hardware platform

Environment archilechre

Figure 8.2 CASE building blocks

1) Environment Architecture: The environment archilee composed of

the hardware platform and system support.

Copy Right DTE&T, Odisha Page 138

2) Hardware Platform

3) Operating System: Database and object manageememntes.

4) Portability services: Allow CASE tools and thaitegration framework to
migrate across different operating systemshardware platforms
without significant adaptive maintenance.

5) Integration framework: It is collection of specedd programs that allow
CASE tools to communicate with one another .
6) CASE Tools : A CASE tool can be used quitedifely, even if it is a

point solution.

8.3 CASE Support in Software Life Cycle

CASE tools should support a development methodolbgp enforce the
same and provide certain amount of consistencykomgdetween different
phases. The kind of support that CASE tools usyaibywide in the software

development life cycle are :

a) Prototyping Support

The prototyping CASE tools requirements are
1. Define user interaction
2. Define the system control flow
3. Store and retrieve data required by the system
4. Incorporate some processing logic
There are several stand-alone prototyping toold. &8tools that integrates
with the data dictionary can make use of entrigh@éndata dictionary, help in
populating the data dictionary and ensure the stersty between the design
data and the prototype.
A good prototyping tool should support the follogifeatures :
* Since one of the main uses of a prototyping CASHstes graphical

Copy Right DTE&T, Odisha Page 139

user interface (GUI) development, a prototypir§SE tool should
support the user to create a GUI using a graphdi®re The user
should be allowed to define all data entry formenms and controls.

* It should integrate with the data dictionary a€ASE environment.

» |If possible, it should be able to integrate with #xternal user-defined
modules written in C or in some popular high lepebgramming
languages.

* The user should be able to define the sequendatesshrough which
a created prototype can run. The user should &sdltwed to control
the running of the prototype.

b) Structured Analysis and Design

A CASE tool should support one or more of the dtred analysis and
design techniques. It should support effortlessigking of the analysis
and design diagrams. It should also support madirige fairly complex
diagrams and preferably through a a hierarchy\#lée The CASE tools
should provide easy navigation through differenels of design and
analysis. The tools must support completeness ansistency checking
across the design and analysis and through alllslewé analysis

hierarchy.

c) Code Generation

As for as code generation is concerned, the gemregctation from a

CASE tool is quite low. Pragmatic support expedtedh a CASE tools
during code generation phase are :

0 The CASE tools should support generation of modukdetons

or templates in one or more popular programminguages. It

should be possible to include copyright messageef br

Copy Right DTE&T, Odisha Page 140

description of the module, author name and the ofateeation
in some selectable format.

o The tools should generate records, structuress,ctifinitions
automatically from the contents of the data dicignin one or
more popular programming languages.

o It should generate database tables for relatiatetbhbase

management systems.

0 The tools should generate code for user interfémen
prototype definitions for X-windows and MS Windowasged
applications.

d) Test CASE Generator

The CASE tool for test case generation shbaige the following
features :

* |t should support both design and requirementrigsti

* |t should generate test set reports in ASCII formlich can be

directly imported into the test plan document.

8.4 List the Different CASE Tools

¢ Business process engineering tools Represent business data
objects,
their relationships, and flow of the datgeabs between company
business areas

¢ Process modeling and management toolsRepresent key
elements of processes and provide links to othas tilvat provide
support to defined process activities.

¢ Project planning tools: Used for cost and effort estimation, and
project scheduling .

Copy Right DTE&T, Odisha Page 141

¢+ Risk analysis tools: Help project managers build risk tables by
providing detailed guidance in the identificationdaanalysis of
risks.

¢ Metrics and management tools: Management oriented tools
capture project specific metrics that provide aarall indication of
productivity or quality, technically oriented mesi determine
metrics that provide greater insight into the dyabf design or
code.

¢ Documentation tools: Provide opportunities for improved
productivity by reducing the amount of time neededproduce
work products

¢ System software tools: Network system software, object
management services, distributed component suppartd
communications software.

¢ Quality assurance tools:Metrics tools that audit source code to
determine compliance with language standards ds that extract
metrics to project the quality of software beingitbu

¢ Database management toolsRDMS and OODMS serve as the
foundation for the establishment of the CASE rejpogi

¢ Analysis and design toolsEnable the software engineer to create
analysis and design models of the system to bd, queirform
consistency checking between models.

¢ Prototyping tools: Enable rapid definition of screen layouts, data
design, and report generation.

¢ Programming tools: Compilers, editors, debuggers, OO
programming environments, fourth generation langsagraphical
programming environments, applications generatans, database
guery generators.

¢ Integration and testing tools

» Data acquisition
» (get data for testing
» Static measurement

Copy Right DTE&T, Odisha Page 142

» analyze source code without using test cases
* Dynamic measurement
* analyze source code during execution
» Simulation
» simulate function of hardware and other externals)
* Test management
» Cross-functional tools

Reference Books
1. Fundamentals of Software Engineering
By
Rajib Mall
Prentice Hall of India
2. Software Engineering A Practitioner’'s Approach
By
Roger S. Pressman

McGraw-Hill International Edition

Copy Right DTE&T, Odisha Page 143

Model Question for Software Engineering

Model Question carrying 2 marks each.

1. What is a prototype?

2. What is project risk?

3. Define software reliability.

4 Differentiiate between verification and validatio
5. What do mean by debugging?
6.Distinguish between alpha and beta testing
7.What is Direct Manipulating Interface?
8.What do you mean by SRS ?

9.What is software reliability?

10. What is a structure chart?

11. What do you mean by CASE?

12.What is project planning?

13.What is staffing?

14. what is scheduling?

15. What is DFD?

16. Why should we use a life cycle model?
17Define object oriented concept.

18.Write down the structured analysis methodology.
19.Define coding standards and guidelines.
20. What is GUI?

21.What is function point metric?

Copy Right DTE&T, Odisha Page 144

22.Which software producted is treated as orgamie?
23. Which software product is treated as embedgseit
24.What do you mean by coupling.

25. What is software engineering.

Model Question carrying 6 marks each

1. What is software reliability? Discuss the thse&ware reliability metrics.

2. Describe how to get 9000 certification.

3.Explain Transform Analysis and Transaction Anislys

4.What are the characteristics of good SRS document

5.Discuss the project estimation technique.

6.Explain the main aspects of GUI.

7. Write down the rules for UID.

8.What is CASE tool? What are the benefits of CASE?
9.Differentiate between object oriented and functioriented software
design?

10.Distinguish between cohesion and coupling. @lasshesiveness.
11.Explain the features of spiral model.

12.Write down the effect of schedule change on.cost

13.Write down the work Breakdown Structure of sahiedj.

14 .Explain Activity networks of Scheduling.

15.Write down the concept of Gantt Chart & PERT €ba scheduling.
16.Explain the software design approaches.

17.What is DFD? Write down the list of symbols use®FD.

18. Explain code inspections.

19. Explain software documentation.

20. Explain debugging approaches & guidelines.

21. Explain the need for stress testing.

22. Explain error seeding of software testing.

23.Write down the importance of software reliagilit

24 .Explain reliability growth modelling

25. Write down the characteristics of quality safter Write down the
evolution of software quality management system.

26.Briefly explain the building blocks for CASE.

27.Write down the limitations of DFD.

28. Explain code inspections methodology.

29.Explain software documentation.

Copy Right DTE&T, Odisha Page 145

30. Define system testing and explain various typéssystem testing
approaches.

Model Question carrying 8 marks each.

1.What is cohesion and coupling? Explain the dsifétypes of cohesion and
coupling.

2.Discuss the prototype model of software develogme

3.Discuss about SEI Capability Maturity Model.

4. Explain UID Processs and models.

5. Explain interface design activities, definingerface objects, actions and
the design issues.

6.Compare the various types of interface.

7.What is COCOMO model of estimation? Discuss #eures of different
COCOMO models.

8. What is cyclomatic complexity? Why it is used@kin how cyclomatic
complexity is computed? Give an illustration foisth

9. Explain the project estimation technique.

10. Explain the different phases of classical wallemodel.

11. Explain the different methods of white box itggtechniques.

12.What is integration testing? Explain the différenethods of integration
testing.

13.Explain the steps of prototyping model with agiam.

14 Write down the different steps of spiral modsd @xplain.

15. Write down the responsibilities of a softwarejgct manager in software
Engineering.

16.Explain organization structure with diagram.

17. Explain team structure with diagram.

18.Explain the classification of coupling.

19. Explain O level, 1 level, 2 level DFD with axaenple.

20.Write down the uses of structure chart & strredfudesign.

21. Explain the principles of transformation of DEba structure chart.

22. Explain the different types user Interface at tthe user can easily
interact with the software.

23.Differentiate between object oriented and functioriented design
approaches.

24. Explain different Black Box testing approacheed for software testing.
25.Explain the different metrics used for softwsize estimation.

Copy Right DTE&T, Odisha Page 146

26. Write short notes on:
a. Spiral model
b. FP based metric
c. Jensen model for stating level estimation,
d. project management.
e. Black box testing
f. Risk management

Copy Right DTE&T, Odisha Page 147

