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CHAPTER -1

COMPLEX NUMBERS

INTRODUCTION

We have the knowledge of integers, fractions and irrational number (all these constitute real numbers).
But if we try to solve the equationd ¥ 1 = 0, we observe that these numbers are not adequate. Trying to
solve this equation, we arrive &x-11i.e. x =,/-1 .

Square of a positive real number is positive and that of a negative real is also positive. So there is no real
number whose square is negative. So we are to create a new kind of number. We define the square root of
a negative number as imaginary number' particulgily =i, the basic imaginary number.

Then+/-4 =2i, /-2 = /2 iand so on.

Imaginary numbers :

Taking i=./-1, we observe that

i2=-1
iB=—1.i=-
‘=1
Since f=1,i=P=P=i=.... ={*1 where n is an integer.
PP=F=j0=i= .. =fn+2
PB=ir=it=%= ... =fn+3
== =i%= ... =19,

COMPLEX NUMBERS

The numbers of the form a + ib where a and b are real numbers agid1 =are known as complex
numbers.

In complex number z = a + ib, the real numbers a and b are respectively know as real and imaginary parts
of z and we write :

Re(z)=aandIm(z) =b

Thus the set C of all complex numbers is given by C ={z:z=a + ib, wherg &}b

Purely real and purely imaginary numbers :

A complex number z is said to be

(i) Purely real, if Im (z) =0

(if) Purely imaginary, if Re (z) =0

Thus, 2, —=7,./3 etc are all purely real numbers.

While2i, /3, %li etc are purely imaginary.

Conjugate of a complex number :
The conjugate of a complex number 'z', denote¢ liy the complex number obtained by changing the
sign of imaginary part of z.

e.g.(2+3) = (2-3;(3+5) = (3 -5,
6i = —6i; —2i = 2i
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Modulus of a complex number :If z = x + iy be a complex number, the modulus of z, written as | z | is

a real number/x? +y? .
For z=3+4i,|z|=/32+4% =5.

Also |z|=|z|
fz=x+iy,Z=x—-1y.

12| =) +y? [ZE X + (Cy)? =X +y?
SUM DIFFERENCE AND PRODUCT OF COMPLEX NUMBERS

For any complex number

z, = (a+ib)and z= (c +id)

we define
(z,+z=(@+ib)+(c+id)=[(@a+c)+i(b+d)
(iYz,—-z=(@+ib)—(c+id)=[(a-c)+i(b-d)]
(i) z,z,= (a + ib)(c +id) = [(ac — bd) + i (ad + bc)]

CUBE ROOTS OF UNITY

Let 3/1 = x, then

x3*=1 [on cubing both sides]

O x*-1=0 O x=1)(®+x+1)=0
0 x-1=0 or X+x+1=0

-1+41-4
0 x=1 or sz
-1+i+3
0 x=1 or X = 2\/—

. 14 -1-iv3
0 The cube roots of unity are M andTh/—
2

Clearly one of the cube roots of unity is real and the other two are complex.
Example — 1 :EExpress in the form a + ib

. 3+5i L (A+i)?
(i) 53] (ii) .
Sop - i 3+5 (3+5)(2+3) 6+10i+9+15° -—9+19 -9 19
N —_— = = . = = — 4+ —
or:() 33 = 2-3)(2+ 3) 4- 92 13 13 %13
o@D’ @rEFA)GH) -2 _6i+2 1 3
) 35 = @-hE+) "~ 9.z - 10 -5 "5
Example — 2 Find the value of 7 + 20 — i'3
SoP i+ 0 — {8 = {8 |+ 012 j= ()8 ]+ (BP0 (R)°.i

= (1Pi+ (-1°—-(-1yi=i+1-i=1
Example — 3 If 1, o, ®? are the cube roots of unity prove that
@ 1-0)l-0)l-0)1-0)=9
Sof: L.H.S. (1 -o) (1-0?) (1-0% (1 -0’
=(1-0)(1-0w?) (1-w.n) (1 -0n?
=(1-0) (1-0)@1-0)1-0)
= (1-0)*(1-0?)*=[1-0) 1 -0’
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=[(1-0-0?+0’?= (2 -0 -n??

=(2+1§y=3%=9
Example — 4 Find square roots of
(@) 3+4i

Sol:(a) Letx,yOR,x+iy=/3+4
X2—yY+i2xy=3+4i
Equating real and imaginary parts
x?—y =3 and 2xy =4
(X2 +y?)2 = (% — V)2 + 4xy? = 25
Hence X + y? = £ 5, But since X+ y? is non-negative, we have
X2+y =5
X2—y =3
2x2=8
ie,=4,ie,x=x2,¥=1ie,y=%1
Hence square roots of 3 + 4i=(2 + i)

Assignment

1. If w be the cube roots of unity, then prove that
Q-w+w)'+(1+w+w)' =128
2. Find square roots of —512/-1
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CHAPTER -2

DETERMINANT

INTRODUCTION :

The study of determinants was started by Leibnitz in the concluding portion of seventeenth century.
This was latter developed by many mathematician like Cramer, Lagrange, Laplace, Cauchy, Jocobi. Now
the determinants are used to study some of aspects of matrices.

Determinant : If the linear equations

ax+b =0
and gx+b,=0
h ax+b, | b, _b,
ave the same solution, they: a,
orab,—ab, =0
The expression (B, — ab,) is called aleterminant and is denoted by symbol.
al .
a, b,|°" by (gb,) where g a, b, & b, are called the elements of ttheterminant. The elements

in the horizontal direction from rows, and those in the vertical direction éotomns The determinant

a

a, b,
= 2 terms in its expansion of which one is positive and other is negative. The diagonal term, or the leading
term of the determinant iskg whose sign is positive.

Again if the linear equations

has two rows and two coloums. So it is calleiberminant of the second orderand it has 2!

ax+by+c=0....... 0]

ax+by+c=0............. (i)

ax+by+c=0............ (i)

have the same solutions, we have from the last two equations by cross-multiplication.
X _ y _ 1

b,c;=bsC, €Az Ca, abr ab

byCs—b3C,  _ Cras— G

a,b; - &b, a,b;- &b,

These values of x and y must satisfy the first equation. He(ige,a- b)) + b, (c,a,—ca) + ¢ (ab,

or x=

— %b )
or altizc3 —ab,.c, +abc,—abc, +ab.c —ap.c is denoted by the symbol
a b ¢
% b Gl by (ab,c,) and has three rows, and three columns. So it is catleteeminant of

as

the third order and it has 3! = 6 terms of which three terms are positive, and three terms are negative.
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MINORS

Minors : The determinant obtained by suppressing the row and the column in which a particular element
occurs is called the minor of that element.

a b ¢
Therefore, in the determinanta, b, c,
a; by G
the minor of ais % C that of b is and that of gis | _- and so on
2 by C5 |’ 3 § a, b '

The minor of any element in a third order determinant is thus a second order determinant.
The minors of g b, ¢, a, b, c, a, b, ¢, are denoted by AB,, C, A,, B,, C,, A, B, C, respectively.

H B b, ¢, _ b, ¢ _ b, ¢
ence 4 = by c5 ? by c | ° b, ¢,
a. a a
_| Cz‘,Bzz , Cl‘,B?,: , q‘
olag G a; G b G
a b |la b _|la b
= y 2— ,C3—
1 la; by a; by a, b,

If A stands for the value of the determinant, then
A= alAl - blBl + C1C1 = alAl - %Az + asAs

Cofactors : The cofactor of any element in a determinant is its coefficient in the expansion of the determinant.
It is therefore equal to the corresponding minor with a proper sign.
For calculation of the proper sign to be attached to the minor of the element, one has to condider (-1)
and to multiply this sign with the minor of the eIeme”mvhere i and j are respecively the row and the
column to which the element belongs.
Thus G= (-1)1 M, Where (Utand M, are respectively the cofactor and the minor of the eleni}ent a
The cofactor of any element is generally denoted by the corresponding capital letter.

a b ¢
Thus for the determinamt =| & b, ¢ , cofactor of ais
a; by g
b, c
Alz‘bz ? |, that of his B, = (12| 2 °2‘=_ % 02‘: C2 az‘
s G 8 G 8 G| [CG &
a b
thatofc isC=| 2 2

(The sign is (=& = 1), and so on.
We see that minors and cofactors are either equal of differ in sign only.
With this notation the determinant may be expanded in the form,

a b ¢
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= alAl + blBl + ClCl

Similarly we express =,A, + bB, + ¢,C,

:a3A3 + bBB3 + CSC3

By expanding with respect to the elements of the first column, we can write

& b ¢

1 _a P2 G b, ¢ b, ¢
_la& b o|=a b N +a,

a, b, c SIS 3 C3 b, ¢,

=aA, +38A, T aA,

Similarly = bB, + bB, + bB,

= ClCl + CZCZ + C3C3

Thus the determinant can be expressed as the sum of the product of the elements of any row (or column)

and the corresponding cofactors of the respective elements of the same row (or column).
PROPERTIES OF DETERMINANT

l. The value of a determinant is unchanged if the rows are written as columns and columns as rows.

a, b
If the rows and coloums are interchanged in the determinant of 2nd oarlderb , the determinant
2 2
b 8 &
ecoem b, b,
Each of the two = &, — ab,
a b
O = =ab, -
In the third order determinant
a b ¢
A=la, b, ¢
a; by g
if the rows and column are interchanged, it
yq B &K
becomes b, b, byl _ A' (say)
C, C G

If Ais expanded by taking the constituents of the first columas@xpanded by taking the constituents
of the first row, then

b, c b, c b
A=a| 2 Pl-a|r Fligl ™ G
by ¢C; by ¢ 2 G
b, b b, b b, b
C, G C, G ¢ G

. A=A'(since the value of determinant of 2nd orders is unchanged if rows and columns are interchanged).
Il If two adjacent rows and columns of the determinant are interchanged the sign of the determinant is
changed but its absolute value remains unaltered.
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& b ¢ a b ¢
LetA=la, b, c| A=|la b ¢
a; by o a; by o

A' has been obtained by interchanging the first and second raws of
Expanding each determinant by the constituents of the first column.

A= b, ¢ | a b, ¢ + b, ¢
by | “lb; &l T|b, o
b, ¢ b, c, b, ¢,
A= a -a +a
and 7) b, ¢, 4 b, ¢, 3 b, c
__a b, ¢, +a b, ¢ _a b, ¢
- by ¢ ? by ¢ ° b, ¢,
sinc b, ¢ +b,c,— ¢, b, anc b & +b,c,— b,c |=-A
b, © 261~ G0, b, c, 1C = 0,C | =

In this way it can be proved that only the sign changes if any other two adjacent rows or columns are

interchanged.

If two rows or columns of a determinant are identical, the determinant vanishes.
a a Qq

Letd, =&, & G
a3 & QG

The first two columns in the determinant are identical. If the first and second columns are interchanged,
then the resulting determinant becomégby Il. But since these two columns are identical, the determinant
remains unaltered by the interchange.

A ==Aor,2A,=0

S A=0

If each constitutent in any row or any column is multiplied by the same factor, then the determinant is
multiplied by that factor.

8 b ¢
Leta= |2 P G
a; by o

The determinant obtained when the constituents of the first row are multiplied by m is

ma b g

M3 bz @ = maiAl_ m%Az + ma$A3

ma; by G
=m [alAl_ %A2+ 63A3] = mA
If each constituent in any row or column consists of two or more terms, then the determinant can be
expressed as the sum of two or more than two other determinants in the determinant.

a b ¢

In the determinant| &2 P2 C
a; by ¢
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Leta=t+m+n,a=t+m+n,a=t+m+n

Then the given determinant

tb+m+n b ¢

t,+m,+n, b, ¢

ty+mg+tn; by ¢

= FmAn) A - GrmEn) A+ (G mEn) A,

= (tlAl - EA2+ t3A3) + (mlAl - mzAz + m3A3) + (nlAl - nzAz + rEAe)
t, by ¢ m b ¢ n b ¢

=t by c|+m; b, c|+In, b, ¢
t; b c; m; by ¢ ng by ¢

It can be similarly proved that

+p b+tag ¢ a b ¢ a q ¢ p, b, ¢ P, 4 ©

+p, b,+aq, ¢l=la, b, ¢ |+|a, 9, C|+|p, b, C(+|p, U, C,

+p; by+0g; G a; by ¢ a; 0; G P, by ¢ P; d; Cs

If the constituents of any row (or column) be increased or decreased by any equimultiples of the

corresponding constituents of one or more of the other rows (or columns) the value of the determinant
remains unaltered.

a b o
LetA=|la, b, ¢
a3 by ¢

The determinant obtained, when the constituents of first column are increakdéichby the second
columnm times the corresponding constituents of the third column is

atlp+mg b g| |a b ¢ o, b ¢ | |mg b ¢
a,+lb,+mg, b, ¢|=la, b, ¢ | +|lb, b, c,|+/mc, b, ¢ ((byvV)
agtlbg+me by G| [a; by G Ib; by ¢ | [me; by ¢

a b ¢ b, b ¢ ¢, b ¢
=la, b, ¢ |+l|b, b, ¢ |+m|c, b, c,|(byiv)

a; by ¢ b; by ¢ C; by ¢

8 b ¢
|3 b c|=A
a b g

SOLUTIONS OF SIMULTANEOUS LINEAR EQUATIONS
Cramer's Rule :

A method is given below for solving three simultaneous linear equations in three unknowns. This method
may also be applied to solve ‘n’ equations in ‘n’ unknowns.
Consider the system of equations.
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axtbytgz= g
X+ byt cz= dp ... L)

a;x+ byt ¢;z= d
Where the coefficients are real.
The coefficient of x, y, z as noted in equations (1) may be used to form the determinant.

a b ¢
A=la, b, ¢

a8 by ¢
Which is called the determinant of the system.

. o A, [ _D, _A,
If A #0, the solution of (1) is given by X=0 y=—= Z—X

obtained fromA by replacing the'rcolumn by ¢, d,,d
5 -2 1
3 0 2
8 1 3

: ,whereA, ; r=1,2, 3 is the determinant
.
Example -1 :Find the value of

Solution : The value of the given determinant

0 2 3 2 30
=5 - +1
1 3 8 3 8 1
=5(0-2)-2(9—-16)+1(3-0)
=-10+14+3=7
a a’ a
b b® b®|_
Example — 2. Prove that =abc(a-b)(b-c)(c-a)
2 3
c ¢ ¢
a & &
Solution : L.H.S.| b b* b’
c ¢ ¢&
1 a &
=abc|/1 b b’| (Taking a, b, c, from RR, R)
1 c¢c ¢
0 a-b &-8
=abc|0 b-c K- |, replacing Rby R —R and Rby R, —R)
1 ¢ c?

0 1 a+b

=abc (a—b) (b-a)° 1 P*C/ (Taking (a-b) & (b-0)
L ¢ ¢ | common from R& R, respectively)
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1 a+b
=abc (a-b) (b- )1 b+c =zabc(a-b)(b—-c)(c—a)
Assignment
1 2 1
) ) ) ?5 1 3
1. Find minors & cofactors of the determina
1 4 2
b+c a a
2. Prove tha b c+a b |=4abc
C c atb
3. Prove that
1+a 1 1
1 1+b 1 :abc(lJ,L%J,_lj
1 1 1l+c a c

O & 0O

11
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CHAPTER -3
MATRIX

MATRIX AND ITS ORDER

INTRODUCTION :
In modern engineering mathematics matrix theory is used in various areas. It has special relationship
with systems of linear equations which occour in many engineering processes.

A matrix is a reactangular array of numbers arranged in rows (horizontal lines) and columns (verti-
cal lines). If there are ‘m’ rows and ‘n’ Column’s in a matrix, it is called an ‘m’ by ‘n’ matrix or a matrix
of order m x n. The first letter in mxn denotes the number of rows and the second letter ‘n’ denotes the
number of columns. Generally the capital letters of the alphabet are used to denote matrices and the
actual matrix is enclosed in parantheses.

a, &, a3 —- &
Ay Ay Ay T G
A & &K TG
Hence A= __ _ _  __ __  __
13m1 B2 Gnz T Gl

is a matrix of order mx n and ‘a; denotes the element in the ith row and jth column. For examte a
the element in the"®row and third column. Thus the matrix ‘A’ may be written 23}13 \ehere i takes
values from 1 to m to represent row and j takes values from 1 to n to represent column.

If m = n, the matrix A is called a square matrix of order n x n (or simply n). Thus

&, & - &
B &y T~ &n
A= Ay &y T &,
_anl Qp —— T~ Gy
a; & ~ Qn
G G TT 8y
is a square matrix of order n. The determinant of ordefn, 32 ~~ 8
ay Qp T T &y
which is associated with the matrix ‘A’ is called the determinant of the matrix and is denoted by det A or

Al
TYPES OF MATRICES WITH EXAMPLES

(@) Row Matrix : A matrix of order 1 x n is called a row matrix. For example (1 2), (a b c) are row
matrices of order 1 x 2 and 1 x 3 respectively.
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(b)

(€)

(d)

(e)

1
a

Column Matrix : A matrix of order m x 1 is called a column matrix. The matr c2e {b} are column
3

matrices of order 3 x 1 and 2 x 1 respectively.
Zero matrix : If all the elements of a matrix are zero it is called the zero matrix, (or null matrix) denoted

0) (0 O
by (0). The zero matrix may be of any order. Thus (0), (({(5)} (O Oj are all zero matrices.

Unit Matrix : The square matrix whose elements on its main diagonal (left top to right bottom) are 1's
and rest of its elements are 0's is called unit matrix. It is denoted by | and it may be of any order. Thus (1)

1 00

101010 . . .
0 1) are unit matrices of order 1, 2, 3 respectively.
0 01

Singular and non -singular matrices :A square matrix A is said to be singular if and only if its
determinant is zero and is said to be non-singular (or regular) if ge0A

1 2
For example(3 4j is a non singular matrix.

1 2 3
12 34 5. __ .
For =4-6=-2£0 and is a singular matrix
3 4
56 7
1 2 3
ie. 3 45 =0
5 6 7

Adjoint of a Matrix :

The adjoint of a matrix A is the transpose of the matrix obtained replacing each elgmehm its
cofactor A. The adjoint of A is written as adj A. Thus if

a1 Ay Q3 An Ay Ag
A=| %1 8n B3 then adj A A Ap Ay
83 Qa3 g3 Az Ay Ag

Example — 1 :Find inverse of the following matrices[i _31}

2 -

Sol: (i) GivenAz{1 3]|A|=7

Al= % Al#0
- |A| ) | |
So it has inverse
Adj (A)
Minor of 2, M, = 3, Cofactor of 2, ¢ =3
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Minor of -1, M, =1, Cofactor of -1, G=-1
Minoir of 1, M, = -1, Cofactorof 1, £=1
Minor of 3, C, = 2, Cofactor of 3, G=2

3 1
adj(A) = {_1 2}

_ 3 11 |21
A_1=a|dAJ|A: 12| ]
7 7 7
Assignment
1 2 3 2
1L IfA=|5 4[.B=|; 4
Calculate (i) AB (ii) BA
3 -2 3
2 1 -1

2. Find the inverse of the following |:
4 -3 2
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CHAPTER -4
PARTIAL FRACTIONS

ALGEBRAIC FRACTIONS, PARTIAL FRACTIONS FROM A PROPER FRACTION

Polynomial :
An expression of the formpd + ax"~*+ ax"~?+ ..... + 3 where n is a positive integer anda, a, ....
a are real numbers ang# O is called a polynomial of'hdegree.

Rational Fraction :
The quotient of two polynomials f(x) and g(x) where g€ is called a rational fraction.

In this section we shall be taking functions which are quotients of two polynomial functions. Such
functions are called rational functions.

The functions given by algebric expression such as

4x° -5 x° 2x-5 X3 +x+1
(x=2(x+2)" (X+D(X+D) " X —xP4x-1 70 xE-1
both the numerator and denominator are polynomial functions. There are three types of partial fractions.
1. Proper fraction.
2. Improper fraction
3. Mixed fraction.
1. Proper Fraction :If the degree of the numerator is less than the degree of the denominator, the fraction

etc are called rational functions. Here

1 2X X2
is called proper fraction for e.g, FD(X*+2) ' X2+ 342 and xX-D(x-2)(x-3 etc.

N° < D°
RESOLVING A RATIONAL FUNCTION INTO PARTIAL FRACTIONS

Case — 1 When the denominator contains non-repeated linear factors,
for each linear non-repeated factor px + g.

A
there is partial fraction of the forrBX—.

q
P(Y P(x) _ .
T T (pox+ a)(pox+ ) poxt @ ( e ) 1 A PrOPEFTTACHON.
P(¥ A Az As An
then Q) = px+a T px+a, T paxtas *ox+q, where A, A,, A, ...... A are constants.

X
Example — 1:Split m into partial fractions



16

Sol: Let

0

Engineering Mathematics — |

X A B

(X+D)(X+2) = x+1 ' x+2

AX+2)+B(x+1])
T (x+D(x+2)
X=AX+2)+BXxX+1)........... ®

Puttingx+2=0ie.x=-2
-2=A.0+B(-2+1)

u
g

-2=-B
B=2

Againputx+1=0

0
O
0

=-1
-1=A-1+2)+B.0
-1=A 0 A=-1

Putting the values of A & B we get required partial fraction

X -1 2

(X+D(X+2) ~ x+1 « x+2

Case - 2:

Example — 2 :Resolve into partial fractions, the function

Sol : Let

When the denominator contains repeated linear fractors, for a repeated factor like
of the denominator there exists the sum of r partial fractions of the form.
A, A, A, A

px+q T (px+g)? T (px+ ) T T (px+g)f

(x=1)(x+1)*
1 A B C

(-Dx+D” T x=1 " X+ (x+D)?

AKX+ +BX+D(x =) +C(x~ )

- (x+1)*(x-1

O 1=AX+1f+B(Xx+1)(x-1)+C(x-1)

Puttingx—-1=0i.e.x=1,

1=A(1+1¥ O 4A=1
0 A==
T4
Puttingx+1=0 0O x=-1
1
1=C(-1-1) O -2C =10 C=—§

Equating co-efficients of highest powers of x (i.§.00 both sides in equation
1=AX+2x+1)+BX-1)+C(x-1)
we get 0=A+B

ieA=-Bi B-E
LeA=-Bie.B=-

" (px +Q)
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Hence required partial fraction is given by
1
H-n(x+ 9’
1 1 1 1
TAx=1) T 4Ax+D) T2 (x+1)°
Case — 3 :When the denominator contains non-repeated quadratic factors which cannot be factorised, For
each guadratic non-repeated factcr-akx + ¢ of the denominator, there exists a partial fraction of

the formﬂ
ax’ + bx+ ¢
1 Ax+B Cx+D
For example, 12 72 4p) = 324q © X2 +B
1
and, (x*+a) (Xl +a)...(¢+a)
Ax+B; AxX+B, AxX+B,

2 + 2 L
X +a, X +a, X“+a,
Example — 3 :Resolve into partial fractions —(x “)E+1)

A Bx+C

X
o R el i
Sof I‘et(><-1)(><2+1) x-1 x2+1

AKX +D) +(Bx+C)(x-1)
- (x=D(*+D
O xX=AX?+1)+(Bx+C)(x-1)....(a)
Puttingx—-1=0ie.x=1in(a)
1=Ar+1)+Bx+C).0

1
O 2A=1(0 A=

2
Equating coefficients of highest powers of x on both side in (a)
X=Ax2+A+B¥+Cx-Bx-C
0 = A + B ; Equating the coefficients of, x
1 = C - B; Equating the coefficients of x.

. . 1
i.e,A=-Ble.B==

2
CcC-B=1
celiipg o1 lol
2 272
So its required partial fraction is given by
X 1 (x=-2

(x-DO+D T 2(x-1D T 203 +1)
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Case — 4 When the denominator contains repeated quadratic factors,
For each quadratic repeated factor takx + c) of the denominator, there corresponds the sum of
r partial fractions of the form.

AXx+B; Ax+B, A X+B,
:—ax2+bx+c+(a.X2+bX+C)2+ ..... +(aX2+bX+()r
1 Ax +B Cx+D Ex+F
For example,(xz+a)(X2+B)2 = O +0) + 2 +B) + O +P)?
1 Ax +B Cx+D E

0C+a)2(x-B) = x+a  (C+a)? T x-p

Assignment

Resolving into partial fractions

84+ 61 — x>
(3x + 1)(16- x?)

X
(1+x)(1+x?)



Engineering Mathematics — | 19

CHAPTER -5
FACTORIAL NOTATION

Let n be a positive integer. Then the product of the numbers 1-2 - 3 ........ (n—21)nis called factorial n,
and is denoted by n!orn!.
Thusn!=1-2-3 ... (n=121)n
Ex: 1I=1

21=12=2

31=1.2.3=6

4=1.2.3.4=24

5/=1.2.3.4.5=120
Deduction:nl=n(n-1)(n-2)(n-3)..3. 2. 1.
=n[n-1)(n-2) (n=-3) ....... 3.2.1]
=n[(n—1)1]
Thus 5! =5x (4!),31 =3 x (2]) & 21 =2 x (1!)
Factorial ‘n’ is the product of first 'n' natural numbers.
Example — 1 : Prove that :

!
MHnnh-=-2))n=2) ......... (n_Hl)FnT—r)!

Sor:(n(n-1)(n-2)....... (n—-r+1)
n(n-H(n-2)....... (n=r+1).(n-r)!

B (n=n!

n!

(n=n)!

[Multiplying N"and Dby (n—1)!] =

PERMUTATIONS

The different arrangements which can be made out of a given number of things by taking some or all
at a time, are called permutations.
Example — 1 All permutations, on arrangements made with the letters a, b, ¢ by taking two at a time are :
ab, ba, ac, ca, bc, cb.
Example — 2 All permutations made with the letters a, b, c taking all of at a time are : abc, ach, bac, bca,
cab, cba.
Notations :Let r and n be positive integers. Suchthat Lt < n
Then the number of different permutations of n dissimilar things, taken r at a time is denoted by P(n,
ryor"P.

n!
Pn,n=nnh-1)(n-2)...... (n_Hl)(—ﬁ—_r)!
Note 2 :The number of all permutations of n different things taken all at a time is given by p(n, n) =
n!
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n! n!
We have P(n, r) :(n——r)' ad P (n, n) =0 [Putting r = n]

n!
O nl= o [+ P(n,n)=n]
n!
O 0! = o =1, We are now bound to define 0! =1,

Each of the different groups of selections which can be formed by taking some or all of numbers of
objects, irrespective of their arrangements is called a combination.
Suppose we want to select two out of three persons A, B and C. We may choose AB or BC or AC.

Clearly, AB and BA represent the same selection or group but they give rise to different arrangements.
Clearly in a group or selection, the orders in which the objects are arranged is immaterial.

Example — 1 : The different combinations formed of three letters a, b, c taken two at a time are ab, bc, ac.
Example — 2 : The only combination that can be formed of three letters a, b, c taken all at a time is abc.
Example — 3 : Various groups of two out of four persons A, B, C Dare : AB, AC, AD, BC, BD, CD.

BINOMIAL THEOREM

The sum of two quantities a and b (i.e a + b) is called a binomial. Raising it to different powers, we get
(@+by=1,(a+b)=a+hb,
(@a+by=a+2ab+5b
(a+by=a+3ab+3aB+b
(a+bf=d+4db + 6&b? + 4al§ + b
(a+ by=2a + 5db + 10db? + 10&b* + 5alf + b°
Observe the presence of the co-effieicnts of these expansions in the successive rows of the following
triangular arrangement.
Binomial Theorem for positive integral index :
Theorem :If x and y are real numbers, then for allinN,
xX+y)=C(n,0)R+C(n, 1) X"y +C(n, 2) R-2y> + ..... +C(n,NXy +..+C(n,n)y

e, (X +yy= iC(n, nx" 'y’

Deduction from Binomial Theorem :
() Replacingy by -y, we get:
X=yyr=C(n,0)Xx—C(n, 1) X~y + C(n, 2) R-2y? + ...... +(-1)C(n, n) ¥

e, (x—y)= Z (-D".C(nn X"y

SOME OBSERVATIONS IN A BINOMIAL EXPANSION
(i) The expansion of (x + &fontains (n + 1) terms
(i) Since C(n, r) = C(n, n—r), It follows that C(n, 0) = C(n, n), C(n, 1) = C(n, n—1) and so on.
So the coefficient of the terms equidistant form the beginning and the end in a binomial expansion,
are equal.
(iii) Middle Terms in a Binomial Expansion :
Since the expansion of (x +'@pntains (n + 1) terms, so
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1 th
@) (§n+1) terms is the middle term, when n is even.

1 th
(b) > (n + 1)"term and[%(n+l) + 1} terms are the two middle terms when n is odd.

General term in a binomial expansion :
In a binomial expansion, the (r + 1)th term, i.e., is taken as the general term.
(i) Inthe expansion of (x + §)we have t = C(n, NX-"y",
(i) Inthe expansion of (x — §)we have t = (=1 C(n, r) X "y";
(i) In the expansion of (1 + })we have t , = C(n, r) X,
(iv) Inthe expansion of (1 —%)we have t = (=1)C(n, r) X.
Example -1 :Find the middle terms in the following :

2x2—E 7
X

Sol': The number of terms in the expansion is 8. Hence there are two middle terms
i.e. 4th and 5th terms.

1 3
dthterm =f=t, = (-1 C(7, 3) (2X)". (;)
=-35x 16 x kx x3=—-560 X

1 4
Sthterm =t=t, = (1) C(7, 4) (2%)>. (x)
=35x8 x &x x*=280 ¥

Assignment

1 11
1.Find the coefficients of%n the expansion OEX -;)

12
1
2. Find the term independent of x in the expansion OEXZ +x2)

O & 0
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STRAIGHT LINE

CO-ORDINATE SYSTEM
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CHAPTER -6

We represent each point in a plane by means of an ordered pair of real numbers, called co-ordinates. The
branch of mathematics in which geometrical problems are solved through algebra by using the co-ordinate

system, is known as co-ordinate geometry or analytical geometry.
Rectangular co-ordinate Axes

Let X'OX and YOY" be two mutually perpendicular lines
(called co-ordinate axes), intersecting at the point O.
(Fig.1).We call the point O, the origin, the horizontal line
X'OX, the x-axis and the vertical line YOY', the y-axis.

We fix up a convenient unit of length and starting from the

origin as zero, mark. distances on x-axis as well as y-axis—s

The distance measured along OX and QY are taken as'3

positive while those along OX' and OY' are considered
negative.

Cartesian co-ordinates of a point

Let X'OX and YOY"' be the co-ordinate axes and let P be a
point in the Euclidean plané-ig.2). From P draw

PM O X'OX.

Let OM = x and PM =y, Then the ordered pair (X, y)
represents the cartesian co-ordinates of P and we denote
the point by P(x, y). The number x is called the x-co-ordinate
or abscissa of the point P, while y is known as its y-co-

ordinate or ordinate. X'<
Thus, for a given point the abscissa and the ordinate are the
distances of the given point from y- axis and x-axis
respectively.

Quadrants
The co-ordinate axes X'OX and Y'OY divide the plane in to four

regions, called quadrants.

The regions XOY, YOX', X'OY" and Y'OX are known as the first,

the second, the third and the fourth quadrant respect{i~dy3)

In accordance with the convention of signs defined above for &:

point (x, y) in different quadrants we have
1stquadrant:x>0andy >0
2nd quadrant: x<0andy >0
3rd quadrant: x<0andy<0
4th quadrant : x >0andy <0

Y
3
2
1
. e 5X
-1 0
T (Fig-1)
2
-3
Y’
Y
M PXy)
1\
y
<—x—| J{_} <
0 M
(Fig.— 2)
R4
Y
(1) (1)
('9+) (+a+)
X
('9') (+")
(1) (IV)
Yy (Fig.—3)
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DISTANCE BETWEEN TWO GIVEN POINTS

The distance between any two points in the plane is the length of the line segment joining them.
The distance between two points P(xy,) and Q(X,, Y,) is given by

Y
1PQ | =[xz ~x0) +(y2 ~y2)°] A .
Proof : Let X'OX and YOY' be the co-ordinate axeg$Fig.4). Let @,\ﬁ\ QX ¥)
P(x, y) and Q(x, y,) be the two given points in the plane. R R

From P and Q draw perpendicular PM and QN respectively on
the x-axis. Also draw PRJ QN.
Then, OM =%, ON =%
PM=y &QN =Yy,
0 PR=MN=ON-OM=x-Xx X' 0 M N > X
and QR=QN-RN=QN-PM=yy,
Now from right angled triangle PQR,

we have P®= PR + QR [by Pythagoras theorem] y (Fig.—4)
= 06— X+ (¥, — V)2 Y
0 1PQI =%z = x2)? + (v, -y2)?}
Cor : The distance of a point P(x, y) from the origin O (0, 0) is
= J(x=0 +(y=07 =i +y? Y
Area of a triangle : \A(X" ¥
Let ABC be a given triangle Whose_ vertices are AYX, +Z
B(x,, y,) and C(x, y,). From the vertices A, B and C draw Q)k.
perpendiculars AL, BM and CN respectively on x-axis. »C(Xs, ¥s)
(Fig.5). i i
Then, ML =% — X,; LN = x,—x and MN = x — X,
0 Areaof AABC
; , 0 M L N ~X
= area of trapezium ALMB + area of trapezium ALNC
— area of trapezium BMNC (Fig.— 5)

=%(AL+ BM) . ML + % (AL +CN). LN
1
—E(MB+CN) . MN

1 1 1
=5 0ty (K =)+ 5 (+Y) (K =%) =5 (1, +Y) (G -%)

1
= E[lel FXY, = XY XY, T XY XY, XY XY, XY, XY, T XY, f Xzys]

1
= E[lez_)syl-'-Xsyl_)(lys_)(3y2+xzy3]

1
=5 X (Y, = Yo + XY= Y) + X (Y, — V)
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In determinant form, we may write

X; Yy 1
X, Y, 1
X3 Yz 1

Condition for collinearity of Three points :
Three points A(x y,), B (X, ¥,) and C(x, y,) are colliner, i.e. lie on the same straight line, if the area of

A ABC is zero. So the required condition for A, B, C to be collinear is that

Area of AABC =

N

1

> X, (Y, =Y + XY, = V) + X (Y, - Y,)] =0

O X, =) + XY, = Y) + X (Y, -Y,) =0
Formula for Internal Divisions :

The co-ordinates of a point P which divides the line joining A(xy,) and B(x,, y,) internally in the
ratio m : n are given by

g= MXp+ Xy o _ My, + Ny,
m+n ' m+n
Example — 1 : In what ratio does the point (3, —2) divide the line segment joining the points (1, 4) and (-
3,16):
Solution : Let the point C (3, —2) divide the segment joining A(1, 4) and B (-3, 16) in the ratio

K:l

] . -3k+1 16k + 4
The co-ordinates of ‘C’" ar K1 kol

But we are given that the point C is (3, -2)

We h -3k+1 3
0 e have— ~—— =
or -3k+1=3k+3
or —6k=2
_ L
R
0 Cdivides AB in the ratio 1 : 3 externally.
SLOPE OF A LINE Y

Angle of Inclination : The angle of inclination or simply the inclination of a line is B
the anglep made by the line with positive direction of x-axis, measured from
it in anticlock wise directiolfFig. 6).

Slope or gradient of a line tf @ is the inclination of a line, then the value of gan 0
is called the slope of the line and is denoted by m. 0 A\ >

CONDITIONS OF PARALLELISM AND PERPENDICULARITY (Fig— 6)

1. Two lines are parallel if and only if their slopes are equal.
2. Two lines with slope mand m, are perpendicular if and only if mm, = -1

Y27y
3. The slope of a line passing through two given points () and (x,, y,) is given by m :(XZ _ le
2 1

4. The equation of a line with slope m and making an intercept 'c' on y-axis is given by y = mx + c.
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Proof : Let AB be the given line with inclinatiogy so that tag = m. Let it intersect the y-axis at C so that
OC =c.(Fig.7)
Let it intersect the x-axis at A.
Let P(x, y) be any point on the line.
Draw PL perpendicular to x-axis and CM PL
Clearly, 0 MCP=0 OAC=6
CM=0L=x;
and PM=PL-ML=PL-0OC=y-c¢
Now, from rt. angledA PMC

PM y—-cC
We get tamp :C_M orsz

or y=mx + ¢, which is required equation of the line.

5. The equation of a line with slope m and passing through a point (¥,) is given by (y —Y)
=m(X —X)

6. The equation of a line through two given points (xy,) and (x,, y,) is given by

YTV
y_yl_ X2_X1 '(X_)ﬁ)

7. The equation of a straight line which makes intercepts of length ‘a’ and ‘b’ on x-axis and y-axis

tively, i X +y 1
respectively, is— += =
p Y. a b

Proof : Let AB be a given line meeting the x-axis and y-axis at A and B respedtrigl).
LetOA=aand OB =b
Then the co-ordinates of A, B are A(a, 0) and B(0, b)

0 The equation of the line joining A & B is

Y
b-0 AN
(y-0)=475 -3
a Y-;(X—a) A(a, 0)
(@) a

y_x o
U b T a (Fig.— 8)

L A
O +b—1

8. Let P be the length of perpendicular from the origin to a given line anadx be the angle made by
this perpendicular with the positive direction of x-axis. Then the equation of the line is given by
X cosa +ysino =P
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Conditions for two lines to be coincident, parallel, perpendicular or Intersect :
Twolinesax+by+c =0andx +hby+c =0are
Lo A b 6
(i) conicident, if a, b, ~c,’
a b G
.. P S S
(i) Parallel if a, b, c,
(i) Perpendicular, if @, + bb, =0 ;
(iv) Intersecting, if they are neither coincident nor parallel.

Example — 1 : Find the equation of the line which passes through the point (3, 4) and the sum of its
intercept on the axes is 14.

Sol : Let the intercept made by the line on x-axis be 'a' and 'y'- axis be 'b'
ie.a+b=14ie,b=14-a
0 Equation of the line is given by

X y .

a + 42 - i 0]

As the point (3, 4) lies on it, we have
§ + 4 =1

a 1l4-a

or3(14—-a)+4a=14a2a
or42-3a+4a=14aza
or&d—13a+42=0
or(@a-7)(@a-6)=0
ora=7o0ra=6

Putting these values of a in (i)

5+X=1 or x+y=7
7 7
Xy

and6+§=1 or 4x+3y=24

Example — 2 : Find the equation of the line passing through (-4, 2) and parallel to the line 4x -3y =0
Sol: Any line passing thorugh (-4, 2) whose equation is given by
Y=-2=mx+4) ..(»0
and parallel to the given line 4x —3y =0

4
whose slope is 'y —=3x L L

4
Here 'm' =2

3 (2.3)
It's equation is

4
(y-2)=5(x+4)

3y—6=4x+16 (Fig.-— 10)
or4x—-3y+22=0



Engineering Mathematics — | 27

Example — 3 Find the equation of the line passing through the intersection of 2x —y — 1 = 0 and 3x — 4y
+ 6 =0 and parallelto the linex+y—-2=0

Sol': Point of intersection of 2x —y—-1=0and 3x -4y + 6 =0
(—1>< 6-(-49(-9 (-Dx3- 6(3)
2-4-3-) "2(-9-3-)

-6-4 -3-12 -10 -15
- (—8+3' —8+3) = ( 5’ —5) =23
Any line parallel to the line x + y— 2 is given by x +y + k = 0.... (i)
Since the line passes through (2, 3) hence it satisfies the equation (i)
S0,2+3+k=0
O k=-5
Now putting the value of k in equation (i), we getx +y—-5=0

O Equation of the lineisx+y—-5=0

Assignment

1. Find the equation of a line parallel to 2x + 4y — 9 = 0 and passing through the point (-2, 4)
2. Find the co-ordinates of the foot of the perpendicular from the point (2, 3) on the line 3x -4y +7 =0

3. Find the equation of the line through the point of intersection of 3x + 4y -7 =0and x—-y + 2 =0 and
which is parallel to the line 5x -y + 11 =0

O % 0
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CHAPTER -7

CIRCLE

A circle is the locus of a point which moves in a plane in such a way that it's distance from a fixed point is
always constant.

The fixed point is called the centre of the circle and the constant distance is called its radius.
Equation of a circle (Standard form) AY

Let C(h, k) be the centre of a circle with radius ‘r’ and let P (X, y) P(X, y)
be any point on the circlgig.1).

ThenCP == CP =r?
=S X—-hp+(y—-kf=r
Which is required equation of the circle. X'< X
Cor. The equation of a circle with the centre at the origin and vy (Fig.—1)
radius r, is X+ y? = ?(Fig.2).

Proof : Let O (0, 0) be the centre and r be the radius of a circle and let P Y
(x, y) be any point on the circle. P(x, y)

el

ThenOP =& 0P =P
= (x—OF +(y - 0f=r Q(0,0) X
SX2+Y=p
Example — 1 Find the equation of a circle with centre (-3, 2) and radius 7. ’
Sor' : The required equation of the circle is Y (Fig.— 2)
X-(3F+(y-2f="7
or (x+3f+ (y—2§=49
orxX+ yY¥+6x—-4y—-36=0
Example — 2Find the equation of a circle whose centre is (2, —1) and which passes through (3, 6)
Sof': Since the point P (3, 6) lies on the circle, its distance from the centre C (2, —1) is therefore equal to
the radius of the circle.

». Radius = CP 5/(3-2)° +(6+ 1° =50

So, the required equation of the circle is
(x—2F+ (y + 1§ =50 Y
orxX+y —4x+2y—-45=0
Example — 3 Find the equation of a circle with centre (h, k) and
touching the x-axis(Fig.3).
Sol: Clearly, the radius of the circle = CM =r =k
So, the required equation
(x=hp+(y-kp=K 0 M
or X2 +y2—2hx — 2ky + A= 0 (Fig.—3)




Engineering Mathematics — |

Example — 4 Find the equation of a circle with centre (h,k) and
touching y-axigFig.4).
Sol : Clearly, the radius of the circle =CM =r=h
So, the required equation is (X 2 k)(y — kf = I?
or X2 +y?—2hx —2ky + k=0
Example — 5 Find the equation of a circle with centre (h,k) and
touching both the axegFig.5).
Sol: Clearly, radius, CM=CN =r
i.e. h=k=r(say)
.. the equation of the circle is (x 28 (y —rf = r?
orx+y-2r(x+y)+£=0

GENERAL EQUATION OF A CIRCLE

Theorem :The general equation of a circle is of the fofrx? + 2gx + 2fy +c =0

And, every such equation represents a circle.
Proof :

(x=hy+(y—kf=r

Orx+y2—2hx—2ky + (A+ K —-rP) =0

This is of the form

X2+y+2gx+2fy+c=0

Where h =—-g,k =—fand c =3h k¥ — i)

Conversely, let%+ y? + 2gx + 2fy + ¢ = 0 be the given condition.

Then, ¥ +y?+2gx + 2fy +¢c =0
= (*+29x+d) + (Y +2fy + ) = (F+f?-c)

= (crgp+ (v + = (Vo7 + -0
= - (OF + by — (0P = [ o+ 7 =]

= (X—hp+(y—kp=r

Where h=-g,k=-fandrgg? +f2-c

29

O M
(Fig.— 5)

The standard equation of a circle with centre (h, k) and radius r is given by

This shows that the given equation represents a circle with centre (—g, —f) and radius.

= \Jg*+f?-c, provided §+ f2> c.

EQUATION OF A CIRCLE WITH GIVEN END POINTS OF A DIAMETER

Theorem :The equation of a circle described on the line joining the points Apand B (X, y,) as a diameter,

is(X=x)X=X)+(y-y)(Y-Y)=0
Proof :
point on the circléFig.6).

Since the angle in a semi-circle is a right angle, we b&\MeB = 90°

Y—Y:
Now slope of AP X — X,

| ¢ Y-V,
And, slope of BP X=X,
Since APL BP, we have

Xl

Let A (x,y,) and B (x, y,) be the end point of a diameter of the given circle and let P (x, y) be any

Y

N

P(x, y)

N ey,

(X))

>X

Y' (Fig.— 6)
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Y=Y | Y=Y2)_ 4
X=X, \ X=X,

Or(Xx=x)X=x)+(y-y)(y-y,)=0

Example — 1 Find the equation of a circle whose end points of diameter are (3, 4) and

3,-4)
Sol. . The required equation of the circleis (x —3) (x +3) +(y—4) (y +4)=0
ie.X—9+y-16=0
or X +y =25

Example — 2 Find the centre and radius of the circle.

BN

X¥+y2—6x+4y-36=0
Sol. : Comparing the equation with
X2+y +2gx+2fy+c=0
We get 29 = -6, 2f =4 and ¢ = -36
or g=-3,f=2andc=-36
.. Centre of the circle is (—g, —f), i.e. (3, =2)
And radius of the circle.

= Jg®+f?-c=v9+4+36=7

Assignment

Find the centre and radius of each of the following circles

X2+y +x-y—-4=0

Find the equation of the circle whose centre is (-2, 3) and passing through origin
Find the equation of the circle having centre at (1, 4) and passing through (-2, 1).
Find the equation of the circle passing through the points (1, 3) (2, —1) and (-1, 1).

O % 0
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| TRIGONOMETRY I

CHAPTER -8

COMPOUND ANGLES

INTRODUCTION :

The word Trigonometry is derived from Greek words “Trigonos” and metrons means measurement of
angles in a triangle. This subject was originally devecpaed to solve geometric problems involving trigangles.
The Hindu mathematicians Aryabhatta, Varahmira, Bramhaguptu and Bhaskar have lot of contaribution to
trigonometry . Besides Hindu mathematicians ancient-Greek and Arwric mathematicians also contributed a lot
to this subject. Trigonometry is used in many are as such as science of seismology, designing electrical circuits,
analysing musical tones and studying the occurance of sun spots.

Trigonometric Functions :
Let 6 be the meausre of any angle measured in radians in counter clockmise sense as show in Fig (1).

Let P(X, y) be any point an the terminal side of aBglEhe distance of P from

PO

3

Ois OP = r=/x2 + v2. the functions defined by 9F >, co® = . tarp=". ¥
IS —r—x+y. e Tunctons dertine Yy ﬁ'r,CO r,a x r

. - - - X ! 7
...(1) are called sine, cosine and tangent functions respectirely. These are called 0 X
trigonometric functions. It followrs from (1) that #n+ cog0 = 1. Other trigonomatric _
functions such as cosecant, secant and cotangent functions are defined é&s cosec 0 Fig. -1
_r r X
-—,se® =—,cob="_.
y X y

SIGN OF T-RATIOS :
The student may remember the signs of t-ratios in different quadrant with the help of the diagram

Y
sin Tan
X'<¢ 0 >X
tan l oS
v

The sign of paricular t-ratio in any quadrant can be remembered by the word *“all-sin-tan-cos” or “add
sugar to coffee”. What ever is written in a particular quadrant along with its reciprocal is +ve and the rest are
negetive.
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Table giving the values of trigonometrical Ratios of angles 0°, 30°, 45°, 60° & 90°

0 0°| 30° 450 60° 909
. 1 1| 3
sind 0 5 \/5 ? 1
IR
cod 1 7 \/5 5 0
1
RELATED ANGLES :

Definitions : Two angles are said to be complementary angles if their sum is 90° and each angle is said
to be the complement of the other.
Two angles are said to be supplementary if their sum is 180° and each angles is said to be the supplement
of the other.

To Find the T-Ratios of angle () in terms of O :
Let OX be the initial line. Let OP be the position of the radius vector after tracing an6aingtbe
anticlockwise sense which we take as positive séRgge.2)
Let OP' be the position of the radius vector after tradign(the clockwise sense, which we take as

negative sense. Sa P' OX will be taken as 8- Join PP'. Let it meet OX at M.

NowA OPM = A P'OM, 0 PP OM=-6
OP'=0P, PM =-PM

A
_ PM_-PM _ P
Now sin (0) = oF  op - —sin@
0
cos (0) = (él\F/,I =OOI\F/I) = coso X'<—R=™M >X
PM_-PM ,
tan (-0) = oM OM - —tan® - P
OP _ OP ,
cosec (9) = M PM —cose® Fig. -2
OP _ OP
sec (0) = oM oM - sedd
OM _ OM
cot (-0) = PM = pM - —coto
To find the T-Ratios of angle (90° -6) in terms of 6. P
Let OPM be a right angled triangle with POM = 90°, 0 OMP =86, D
0 OPM= 90- 8 . (Fig. 3) N
: oM o
O sin (90°-0) = M cos® [ cosec (90°0) = sedd ! N
cos (90° -0) = oP =sin@ [ sec (90°-0) = cosed o Fig. -3

PM
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oM
tan (90° -6) = oP " cot6 [0 cot (90° -6) = tan®

To find the T-Ratios of angle (90° 40) in terms of 6.
Let 0 POX=6 and0 P'OX=90°+ 0. Draw PM and P'M' perpendiculars to the X-gxig. 4)
Now A POM O A P'OM'

0 P'M'=OM and OM' =-PM Y
a00 4m = P M _OM P
Now sin (90° +9) = oP _op - coso N
oy = OM _PM _ 0
cos (90° +0) = oP_ op - —sin® X'< VIR X
. PM _ OM
tan (90° +0) = oM —PM = —coto y'
Similarly cosec (90° 9) = sedd Fig. -4

sec (90° #) = — cose®

and cot (90° 0) = — tano
To Find the T-Ratios of angle (180° ) in terms of 0.

Let OX be the initial line. Let OP be the position of the radius vector after tracing an angle &XOP =
To obtain the angle 180°Het the radius vector start from OX and after revolving through 180° come to
the position OX'. Let it revolve back through an argliem the clockwise direction and come to the
position OP' so that the angle X'OP' is equal in magnitude but opposite in sign to the angle XOP. The
angle XOP'is 180° 8. (Fig.5)

Draw P'M' and PM perpendicular to X'OX. \%
Now A POM = A P'OM".
O OM'=-OM and P'M' = PM P'
o PM_PM SN
Now sin (180° -0) = oP _ OP =sind e f -
M [ M
s n_ OM _ OM
cos (180° -0) = oP . op - —CosH y
. PM _ PM )
tan (180° -0) = oM —oM - —tan® Fig.—5
Similarly cosec (180° 8) = cosed
sec (180° 0) = —sed
and cot (180° 0) = — cotb
To Find the T-Ratios of angle (180° 0) in terms of .
Let 0 POX=0 and ] P OX=9C°+ 8.(Fig. 6) a
Now A POM = A P'OM".
0 OM =-OMand P'M'=—PM P
N i 180°+8-m=ﬂ- in0 X' § > X
ow sin ( ) = oP op - —sin M
s _OM'_ OM P
cos (180° +9) = oP . op - —cosH
Y’
PM  -PM )
tan (180° #0) = —~ =——— =tan® Fig.— 6

OoM' -OM
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Similarly cosec (180° ) = cose®
sec (180° ) = —sed
and cot (180° 0) = cot6.
To Find the T-Ratios of angles (270% 0) in terms of 6.

The trigonometrical ratios of 270%9-and 270° 0 in terms of those df, can be deduced from the above
articles. For example

sin (270° -0) = sin [180° + (90° 9)]
= —sin (90° -6) = — coH
cos (270° -0) = cos [180° + (90° 8)]
=—cos (90° 0) = —sind
Similarly sin (270° 9) = sin [180° + (90° 0)]
= —sin (90° 49) = — co
cos (270° 40) = cos [180° + (90° )]
=—cos (90° 4) = — (-sinB) = sin®
To Find the T-Ratios of angles (360% 0) in terms of 6.

We have seen that if n is any integer, the angle n. 3601s represented by the same position of the
radius vector as the angte6 . Hence the trigopnometrical ratios of 3608 are the same as thoseio.
Thus sin (n. 360° 8) = sin®
cos (n. 360° B) = cosb
sin (n. 360° -©) = sin (-6) = — sinO
and cos (n. 360° 6) = cos (8) = cosb.
Examples :
cos (—=720° 8) = cos (-2 x 360° 8) = cos (V) = cosb
and tan (1440° ) = tan (4 x 360° B) = tan®
In general when is any integerenZ
(1) sin (m+0) = (-1) siB
(2) cos (m+6)=(-1)co®
(3) tan(m+06)=tar® when nis odd integer

(4) sinﬁ%ﬂ eﬁz (—J)nT_l cod

Dn-r[ n+l

(5) cosB?+eﬁ=(— )2 sird

Ont. 0O
tan + 0 co
© e, *Or
EVEN FUNCTION :
A functionf(x) is said to be an even functionxgfif f(x) satisfies the relatiof{—x) = f(x).
EX. cosx, secx, and all even powers of X i X% X5...... are even function.
ODD FUNCTION :

A functionf(x) is said to be an odd function xfif f(x) satisfies the relatioff—x) = —f(x).
EX. sinx, cosec x, tan X, cot x and all odd powers of x ¢.ecxx...... are odd function.
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12
Example : Find the values of si# and tand if cosd = 13 and @Alies in the third quadrant.

Solution : We have sif9 + coso = 1

0 sin@=+/1- co$0

In third quadrant sihis negetive, therefore

_12ff _-5

sing=-1-cod6 =1 O3 H 3

N tane——Sine—_—Sxis——5
ow co® 13 - 12 12

Example : Find the values of
() tan (—=900°) (i) sin 1230°
Solution : (i) tan (=900°) = —tan 900° = — tan (10 x 90° + 0°) = —tan0° =0
1
(i) sin (1230°) = sin (6 x 180° + 150°) = sin 150° = sin (180° — 30°) = sin 300 =
Example : Show that

€0s(90°-9).sec(—0).tan(180°-0) - q- -sin@ xsed® x —tan® _
sec(36020).sin(180°+0) .cot(90°—0) T se®x-singxtand

o cos(90%6 ).seeff). tan(1868)  —sinBx se®x— ta® _
Solution "sec(36020 ).sin(180%9 ).cot(980)  sedx- siOx ta®

ASSIGNMENT

1. Find the value of cos1°.cos?2°..... cos 100°

T 31 STt m a
-tan— (tan- Otan— O tap— 0 tap- 0]
2. Evaluale: 0 20 20 20 20

O & O

35
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COMPOUND, MULTIPLE AND SUB-MULTIPLE ANGLES

When an angle formed as the algebric sum of two or more angles is called a compound angles.
Thus A + B and A + B + ¢ are compound angles.

Addition Formulae

When an angle formed as the algebraical sum of two or more angles, it is called a compound angles.
Thus A + B and A + B + C are compound angles.
Addition Formula : N
(i)sin(A+B)=sinA.cosB+cosA.sinB
(i) cos(A+B)=cosA.cosB-sinA.sinB
tanA + tanB P M
(i) tan (A +B) = 1 "tanA . tarB A
Proof : Let the revolving line OM starting from the line OX make an Q T
angle XOM = A and then further move to make. B
[0 MON =B, so thatdd XON =A +B (Fig. 7) A > X
Let 'P' be any point on the line ON. O R S
Draw PR OX, PTOOM, TQO PR and TSO OX
Then O QPT =90° -0 PTQ = O QTO = O XOM = A Fig. - 7
0 We have from\ OPR
RP _ QR+ PQ_TS+PQ

) sin(A+B)= oP - op oP (- QR=TS)
TS PQ TS OT PQ PT
OP oP OT OP PT OP
=sinA.cosB+cosA.sinB
.. A+B OR _0OS- RS OS RS
(W) cos(A+B)= 5= "op “op OP
_0S QT RS = OT
~OP OP [-- RS=QT]

_OSOT_QT PT

"~ OT'OP PT OP

=cosA.cosB-sinA.sinB

Sin(A +B)

cosA +B)
SinA cosB + cod siB

~ cosA co8 - siA siB )

(dividing numerator and denominator by cos A cos B)
SinA coB N COSA sinB

B cosA co88 cosA coB
~ CcosA co8 sinA sinB

cosA co88 CcosA coB

tanA + tamnB
@an(A+B)=1_anA | tarB

(iif) tan (A + B) =
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Cor

(b)

Proof :

cosA +B)
sin(A +B)

cosA coB - sih\ siB
~ sinA cosB + cod siB

(iv) cot(A+B)=

[dividing of numerator and denominator by sin A sin B]

cosA co8
SinA sinB
~ SinA cos8B + COSA sinB
SinA sinB  sinA sinB

COotA .cotB -1
cot (A +B) = cotB + cotA
T
: In the above formulae, replacing A l?/ and B by x
We have

. -("+x)_-ﬂ ool o
() sin 5 —S|n2.cosx c052.5|nx

=1.cosx+0.sinX=cos X

. n T T
(i) cos| 5 *tX| =cos- . €0S X —sif, . sin x
2 2
=0xcosx—1xsinx=-sinXx

2]
Sin —+X
; COSX

T
LS _ _
(iii) tan(2 X) = cos(n+x) = ginx = —COtX
2

Difference Formulae :

() sin(A-B)=sinA.cosB-cosA.sinB

(i) cos(A—B)=cosA.cosB+sinA.sinB
tanA — tarB

(i) tan (A=B) =1 tanA . taB

so thatd XON = A — B. (Fig. 8)
Let 'P' be any point on ON. DraRRO OX,

PTO OM, TSO OX, TQUO RP produced to Q.

ThenOTPQ=90C° -0 PTQ=0 QTM= A
Now fromA OPR, we have
PR_QR-QP_TS-QP

() Sin(A-B)= 55" 5p op

oo

37

Let the reveolving line OM make an angle A with OX and then resolve back tohb&@N =B
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_IS_QP

" OP OP

_ TS OT _OP PT
" OT'OP PT OP
=sinA.cosB-cosA.sinB
(i) cos (A B)_@:OS+SR:OS+ TQ_QS+E
"OP  OP op ~ OP QP
_0S OT 1Q PT
OT OP PT OP
=cosA.cosB+sinA.sinB
sin(A-B) sinA.co8- col .siB
(i) tan (A=B) = o5 A —~B) = cosA coB + sk siB

tanA - tarB
~ 1+tanA tarB

Dividing the numerator and the denominator by cos A. cos B.
Cos@A-B)

sin(A -B)

_ CosA .coB+ siA .si

~ sinA.co8 - coA .siB

CcotA .coB +1

cotB - cotA
dividing the numerator and denominator by sin A. sin B

We can also deduce substraction formulae from addition formulae in the following manner.
sin(A — B) = sin[A + (-B)]
=sin A. cos (-B) + cos A . sin (-B)
=sinA.cosB+cosA.sinB
cos(A — B) = cos[A + (-B)]
=cos A. cos (-B) —sin A. sin (-B)
=cosA.cosB+sinA.sinB

tanA + tan B ) _ tanA - tarB
tan(A - B) =tan[A + (-B)l =1 "ianA tan (B ) 1+tanA .tarB
Example — 1 :Find the value of tan 75° and hence prove that tan 75° + cot 75° = 4

(iv) cot(A-B)=

tan45+ tan30
) T-tan45 tan30

Solution: tan 75° = tan(45° + 30°

l+i \/§+1
BB

_1_£'_\/§_1
NERN
J3+1

tan 75° =
0TS =R
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J3-1 : 1
o — since cotf=———
O cot75 =B+l tan®

. L 3+1 J3-1 (3+1)7+(J3-9’
tan 75° + cot 75 —\/:—3_1"'\/:—34_1— (\/§+:D(\/_3_:D
:3+1+2J'3+3+1- 2/ 3

3-1
[0 tan 75°+cot75°=4

[since (a+b) (a—b) Za 1

1 1 T
Example — 2:1fsin A = E and sin BZE show that A + B:Z

1
Solution: sin A= E

1 10-1 9
= in2 = J1-— = . |—=,/—
COS A =y1-sin® A \/ 10 \/10 10
3
DcosAzm
sin B = /5 €0s B=J1-sin’B
I O Ll S
B 5 5 5
2
DcosBzﬁ

Sin(A +B) =sin Acos B + cos Asin B
__1 xi+ixi—_2 +_3
V10 5 V10 V5 50 /50

2+3 _2+3
- J50 542
5 1
Dsin(A+B)=$:E
sin (A + B) = sin 45°

0 A+B = 45° =g [since 45:?}

Transformation of Sums or Difference in to Products

(a) We have that
sin(A+B)+sin(A-B)=2sinAcosB ...(0)
sin(A+B)—sin(A-B)=2cosAsinB ...(2)
cos(A+B)—cos(A-B)=2cosAcosB ...(3)
cos(A—B)—-cos(A+B)=2sinAsinB ...(4)
LetA+B=CandA-B=D

C-D

Th A—w dB=——+F—
enA=——andB="—"
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(b)

(€)

(d)
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Putting the value in formula (1), (2), (3) and (4) we get

) i C+D C-D )
sin C +sin D = 2 sin cos ()]
2 2
: : C+D C-D .
sin C —sin D = 2 cos sin ()}
2 2
C+D C-D
cosC+cosD=2 CO“T cos 5 (1))
C+D ~ D-C ,
cosC-cosDh=2 smT sin 5 e (IV)

for practice it is more convenient to quote the formulae verbally as follows :
Sum of two sines = 2 sin (half sum) cos (half difference)

Difference of two sines = 2 cos (half sum) sin (half difference)

Sum of two cosines = 2 cos (half sum) cos (half difference)

Difference of two cosines = 2 sin (half sum) sin (half difference reversed)

D-C
[The student should carefully notice that the second factor of the right hand member of Iv—ifsim

-]

2

To find the Trigonometrical ratios of Angle 2A in terms of those of A : sin 2A, cos 2A.
Since sin (A + B) = sin A cos B + cos A sin B

not sin

putting B = A
sin (A + A) =sin Acos A + cos Asin A
O sin2A=2sinAcosA ... 0]

cos (A+B)=cosAcosB-sinAsinB

O cos(A+A)=cosAcosA-sinAsinA

O cos2A=coA-sirtA ... (i)

Alsocos 2A=1-sith—siftFA=1-2sidA ... (iii)
So 2sidA=1-cos2A . (iv)
Also cos 2A=con — (1 —-co%A) =2cCcosA-1 ... (V)
or 2coéA=1+cos2A .. (vi)
Formula for tan 2A

, tanA + tarB
since tan (A + B) m

tan 2A = t A+ A _tanA+tarA
an 2A =tan ( ) “1-tanA tarA
B 2tanA

~ 1-tarfA
Note this formula is not defined whentarr 1 i.e,tan A =%+1
To express sin 2A and cos 2A in terms of tan A
sin2A =2 sin Acos A

SinA

COsA _ 2tanA 2tanA

- 1  sedA  1-tarfA
cog A
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Also, cos 2A = cO — sirfA
1 si’ A
_CcofA-sifA T ofA _ 1-tarlA
cos A + sirfA LSIPA - 1+ta’A

1
cos A
(dividing numerator and denominator by #gs
1-tar’ A
cos 2A :L
1+tar’ A

(e) To find the Trigonometrical formulae of 3A
sin 3A =sin (2A + A)
=sin 2A cos A + cos 2A sin A
=2sinAcosA.cosA+(1-238K) sinA
=2 sin A(1 — sifA) + (1 — 2 sidA) sin A
=3sin A—-4sifA
Again, cos 3A =cos (2A + A)
=cos 2A cos A —sin 2Asin A
=(2codA—-1)cos A—2sin Acos A.sin A
=(2codA—-1)cos A—2cos A (1-cbs)
=4 co8A—-3cos A
Also tan 3A =tan (2A + A)

tan2A + tanA
T 1-tan2A tamA

2tanA

1-tarf A
2tanA

C1-tarfA

2tanA + tanA (- tahA )
1-tarf A - 2 tarfA

_ 3tanA - tarffA

~ 1-3tarfA
()  Submultiple Angles :

To express trigonometric ratios of A in terms of ratios of A/2

sin 2 = 2 sinB coso (true for all value 08)

+tanA

.tanA

1
, provided 3tatA # 1li.e, tan A%Z + —
P e

] A
Let20=Aie.0=—

2

WA= A A :
sin A= sm2 cos > v ()
cos D =cos60 —sirf 6

A A .
or cosA=cos; —sift7 ... (i)

2 2

A

CoOsA=2co5 —-1=1-2sih ... (i)
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Also. tan B = 2tanf
SO. AN &= arte
2tané
tanA=——2- . (iv)
1—tan25

1
[Where A# ni + o (nO ) and A% (2n + D)n]

Zsiné Cosé 28“’\é Coé

. . _ 2 2 _ 2 2

Again, sihnA=——% ¢ = A A
1 co§5+ sir?E

A
[dividing numerator and denomenator by%gs)
2 tan%
Sin A = A
1+ tar’ 5

[where AZ (2n+ 1, n O 1]
co§%— sirf— cosz— sirFé

Similarly, cos A =

1 cos2 AL sinh
2 2
A
Now dividing numerator and denominator byes

1-ta? 2

0 cosA = 2 [where AZ 2n+ 1x, n O 1].
A
1+ tar? 5

Example -1 : Find the values of

(i) cos 22} (i) sin 15°

Solution : (i) We have COS— \ puttlng A = 45°

coszzl /1+cos45° ’ \/* \/\/574r

(ii) sin 15° = sin (45° — 30°)
= sin 45°. cos30° — cos45°. sin 30°

Sile
I\)T&

Sl

o=
2

=k

Engineering Mathematics — |
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1
Example — 2: Prove that sinA.sin (60° — A).sin(60° + A)Zzsin?,A

Solution : sinA.sin (60° — A) sin (60° + A)
= sin A. (sirt60° — sifA) [ sin (A + B). sin (A — B) = sitA — sirtB]

= smA%iﬁ — sirf AD S'”% sirf AH_Z [3sinA — 4 sifA]

——sm 3A
4
3
Example — 3: Prove that sin20°.sin40°.sin60°. sm80°—l%
Solution : sin 60°. sin 20°.sin40°. sin 80°
_3 . .
=5 [sin A. sin (60° — A). sin (60° +A)] where A = 20°
=B L ginaa= Y3 rgineos Y30/ 3= 3
4 8 8 2 16

Example —4:If A+ B+ C =n and cos A =cos B . cos C show thattan B + tan C =tan A
Solution : L.H.S. = tanB +tan C

smB sinC _ sinB.coC+ co8 .sik

cosB cosC cosB .co

_sinB+C)  sin(m-A)  sinA

" cosB .coT ~ cosB .co ~ cosA
Examples — 5: Prove the followings

(a) cot71§:\/€+\/§+\/_2+ 2

=tan A = R.H.S. (Proved)

(b) tan371—;:J6+J§—ﬁ—2

Solution : (a) We know cotg—1 +cos9 (Choosingd = 15)
2 sin®
1, 1+ cosl®
=cot7=°=———
2 sinlys
14 J3+1
2\/5 2+\/§+\/_3+ 1
Jv3-1 T J3-1
242
(224349 (I3+)  2/6+2/2+/3+ V3 I 3
T (B-p(E+y T 3-1

_ 2\/6+2\/T’23+ 2/ 2+ 4=J€+J§+J_2+2
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0 sin@ 1-cosf
(b) We know tan£= 1+ coso = " sind (Choosingd = 75°)
1° 1 COS?? 1_COS(9(?_ 15 )
@n37° =" 7~ sin@Cr-18)
. 1- \/—
1—sm15’: 242 0J2-J3+1
= cosl® J3+1 = T 3e1
242
_(2/2-V3+3(/3-)  orfied
(\/§+:D (\/73) :D =J6++43-2-2

K+1

Example — 6: If sin A = K sin B, prove that tan% (A-B) =
Solution : Given sin A=K sin B
sinA _ K
U sin ™ 1
Using componendo & dividendo
SinA + sinB K+1
sinA -sinB ~ K -1

ssnA*B A-B
sin 5 .COS 5 K+1

| — =
2003% .sin'% K-1

A+B A-B K+l
2 Oy Tk
A+B  K+1 A-B
= ta
2 K-1 2
A-B _K-1 _A+B
2 Tk+1@
0 L.H.S.=R.H.S. (Proved)

0 tan

O tan

|
>

[ tan

a
Example - 7: If (1 —e) taﬁ% =(1+e) taﬁE, Prove that co =

a
Solution : (1 —e) taiﬁE =(1+e) tahE (Given)

e = 1€ 28

am, = 1-e Ay
L.H.S = cosp

1+ et nz a

1 e
1+—t nza
1-

L%aﬁﬁr 1-
_ 2 _

C1+taP
2
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1
tan 5 (A +B)

cosa — e
1-ecox
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a a
1-tan* = |-e|1+ tarf—
1—e—tan2%—etarfg2 ( 2) ( 2

- a - (1+tan2aj—e(1— tan"aj
2 2

l1-e+tant S +etat
2 2

1-tar Y 1+tar®
2 2

e~
<

a a
1+tan®* —  1+tan® —
2 2

1+tat d 1-tam? &
2 2

-e
a a
1+tan® —  1+tan®’ —
2 2

cosa —e
= 1-ecosa - R.H.S (Proved)
Example — 8:1f A + B + C = &, then Prove the following
(i) sin2A +sin 2B + sin 2C =4 sin A. sin B. sin C
Solution : L.H.S. = sin 2A + sin 2B + sin 2C
=2sin(A+B).cos(A-B)+2sinC.cosC
=2sin@t-C).cos(A-B)+2sinC.cosC
=2sinC.cos(A-B)+2sinC.cosC
=2 sin C [cos (A—B) + cos C]
=2 sin C [cos (A —B) —cos (A + B)]
=2sinC.2sinA.sinB
=4sinA.sinB.sinC R.H.S. (Proved)
(i) sin2A +sin2B—-sin2C=4cosA.cosB.sinC
Solution : L.H.S. = sin 2A + sin 2B —sin 2C
=2sin(A+B).cos(A-B)-2sinC.cosC
=2sint-C).cos(A-B)—-2sinC.cosC
=2sinC.cos(A-B)-2sinC.cosC
=2 sin C [cos (A — B) — cogt{— (A + B)}]
=2 sin C {cos (A —B) + cos (A + B)}

A-B+A +B A -B -A —B}
.COS 5

=2 sin 0{2 Ccos
=4 sin C. cos A. cos B.

A B
(i) sin A+sinB—-sin C =4 sinz sin - cos—

2 2 2
Solution : L.H.S. =sin A+sinB -sinC
. A+B A-B . C C
=2 S|n? . Cos 5 -2 smE . cosz
C A-B . C C
=2 Ccos; .cos —2sin; .cos_

2 2 2 2
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=2co >
A-B A+ A-B A+B
Cl(- 2 2 2 2
— 5 cos (-2)si > Si >
2
acod s sn(-2)
=— cosz.smz.sm >

=4 C s 'E-RHSP d
= cosz.smz.smz— .H.S (Proved)

ASSIGNMENT

1 1
1. |If tana = 3 ,tar =3 then find the value oftq(+ B)

> Findth | cos15% sin15°
' ind the value 0coslS"— sin15°

1

tan 3A - tanA_ cotA- con
4. If A+ B =45° show that (1 + tanA) (1+ tanB) = 2

=Cot2A

3. Prove that

5. If(l-e) tanzgz (1+e)taﬁ%

cosa —e
1-ecosn
6. IfA+B+C=m, prove that
C0S2A + cos2B + cos 2C + 1 + 4 cos A.cosB.cosC =0

O & O

Prove that cds =

Engineering Mathematics — |
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CHAPTER -9

INVERSE TRIGONOMETRIC FUNCTIONS

INVERSE FUNCTION :

If f: A — B be a bijective function or one to one onto function from set A to the set B. As the function is
1 -1, every element of A is associated with a unique element of B. As the function is onto, there is no element
of B which in not associated with any element of A. Now if we consider a function g from B to A, we have for
f € B there is unique & A. This g is called inverse function of f and is denotedby f

A f B B g A
1 = a a = 1
2 >—1—h b > 2
3 c c 3

INVERSE TRIGONOMETRIC FUNCTION :
We know the equation x = siny means that y is the angle whose sine value is x then we havg y = sin
similarly y = cosx if X = cosy and y = tafx is X = tan y etc.
The function sinx, cosx, tan’x, secx, cosecx, cot’x are called inverse trigonometric function.
*  Properties of inverse trigonometric function.
I.  Self adjusting property :
(i) sin?(siB) =06
(i) cosYcoP)=6
(i) tan™ (tarb)=0
Proof:
(i) Letsind = x, thend = simx
- sim?t (sinB) = sim’x =0
proofs of (ii) * (iii) as above.
Il. Reciprocal Property :

. 1

0] coseci = simix
N 1

(i) sect < CoSX

1
(iii) cot—1; = tam'x
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Proof :

1

(i) Letx=si® then coset= *
] 1
so thatd = simx & 0 = coseé;

) 1
. simx = cosec! X

(ii) and (iii) may be proved similarly
Ill. Conversion property :

(i) simix = cos'y1-x* = tan

X
V1-x2

y . L V1-X
(i) cos™ sin™v/1-x* = tan*
X

Proof:
(i) Let6 =simx so that sird = x

Now cosf=+/1- sif0 =+ + x2

ie., 8=cos*1-x?

tang = sin@ _ X
0 6=tan*
1-x?
Thus we haved =sin* x= cos*v + x* = tan' X ;
1-x

Theorem — 1 : Prove that

T

(i) sim*x + cos’x = 5
Tt
(ii) tarmx + cotx = 5

Tt
(i) secx + cosecx = 5

Proof :
() Letsimx =0, then

T
=sind = —-0
X =sin0b cos(2 )

Tt
Iy = ——0 =
0 cosx 5

—simt x

NIE g

O simx +cosx =
(i) and (iii) can be proved similarly.

Engineering Mathematics — |
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Theorem — 2 : If xy <1, then

tan~x + tanty = tan? aha
1-xy

Proof : Lettan'’x =0, and tan'y =0,
Then
tan6, = x and tarb, = y

O tan@. +6,) = tan, + tam@, _ x+y
0, +6;) = 1-tan@, tarB, 1-xy

1 X+y
O 6,+6,=tam 1-xy

X+
a tarr1x+tan1y:tarr1( ~ J

Theorem — 3 : tan’x —tamy = tarrl(lx ;)2;)
Proof : Let tan'x =0, and tan'y =0,
0 tan6, =xandta®,=y
tand, — tarB, _ x-y
1+tan@, ,tarB, 1+xy

0 tan@,-6)=

1 X7y
O 6,-6,=tam 1+ xy

X-y
Iy _ 1y — 1
0 tanmx —tan'y = tamr L”XY}

Note :tarr! + tan! y + tan'z
[ XHy+z=—xyz

= tam 1-xy-yz-zx
Theorem — 4 :Prove that :

(i) 2simix = sirrl[ZX\/ 1- XZ]

(i) 2 cos™ = cosY(2x?—1)
Proof :
0] Let simx =0, Then, x = sird

O sin 2 =2 sin cosb = 2 sind. /1-sin’0
= 2xV1-x°
0 20= sirrl[ZX\/ 1- XZ] 0 2simx = sirrl[ZX\/ 1- xz]

(i) Letcosx =6 Then, x = co®
0 cosD=(2co80-1)=2%-1
O 20=cos{(2x*—-1)
O 2cosx =cos*(2x¥—1)

49
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Theorem - 5 :Prove that

() simix+simty = sirrl[X\/l— y2 +y1- xz]
(i) cosx + cosly = cosl[Xy—\/ (1—x2)(1—y2)]
(iii) sinx —sinty = sirrl[X\/l—y2 —y\/l—xz]

(iv) cos’x —cosly = cosl[Xy +y(1-x*)(1- yz)]
Proof :
(@ L_et sim'x =0, qnd sinty =0,, Then

sin6, = x and sirb, =y

O sin(9, +06,) =sin6, coso, + cosb, sino,

sing,1-sirf @, +(1-sin’6,) sine,
xV1-y? +y1-x?

0 6,+6,= sirrl[xﬂ +yJ1-x2 ]

O simix + simly = simx W +yJ1-x2 ]

The other results may be proved similarly.
Example — 1 :If cos™x + cosly + cos'z =n
then prove that X + y? + 2+ 2xyz =1
Solution : Given cosx + cosly + cos'z =7
cosx + cosly =m — cos'z

cost (xy — v1-x%,/1-y?) = (n — cos'z)
Xy — J1-x2,/1-y? =cos { — cos'z)

O Xxy-—+1-x*,1-y? =—cos (codz) = -z
O xy+z=41-x*{1-y?

O (y+2P=(1-R) (1 -y) = 1R -y + Xy
O Xy2+Z2+2xyz=1-%—yV+xy?
O xXe+y+2Z2+2xyz=1 (Proved)

Example — 2 Find the value of cos tant cot coslé

. 3 3
Solution : 00517 =0 [0 cosO = -

T J3

O o6=—<101 (:osl—-E
"6 2 6

J3 Tt
] cos tan:cot 00517 = cos tant cotg

m 1
= cos tar /3| -+ tany/3= " |= cos= ==
3 3 2
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1 1 31
_q- = 17 — .
Example — 3 : Prove that2tarrl2 + tanm y tan 17"
. 1 1
Solution : LH.S 2 tanlz + tarrl?
1 1 1 a1 11 41
- 1= 1= 1= c2tan = =tan =+ tan"=
tam 5 + tamr 5 + tan y ( 5 5 2)
11
1 i
= tarr1§ + tarr1—21 71
1-=x=
2 7
[ tan'x + tan'y = taﬁlx-'-y}
1-xy
9
= tarT11 + tant? E = tarT11 + tant? S
2 13 2 13
14
1 9 31
= tarr? 2713 = tam 28 = ani>2 = RH.S. (Proved
_anm—anz—anﬂ- .H.S. (Proved)
2 13 26
41 m
Example — 4 : Prove that cot9 + coseég :Z
. 41
Solution : L.H.S. = cot!9 + coseclT
1 4 .. 4v4l _ .4
1,4 5+36 41
—tan1.9 5 _i o 45 _ o 145
tarr 1_1 7 tarr YT ta”il
9'5 45 45
]
=tantl= 2 R.H.S. (Proved)
ASSIGNMENT

1. Find the value of tafil + tan’2 + tan'3
2. If sin”x + simly + sim’z =w. Show that

xJ1- X2 + y\/l— v+ all- 2=2xyz

D ¢ 45 T
3. Ifssin 1§+ CO®C 171=E . Find the value of x.

O % 0
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CHAPTER - 10

PROPERTIES OF TRIANGLE

Introduction :

In any triangle ABC, the angles of a triangle are deroted by the capital letters A, B, C. The sides BC, CA
and AB opposite to the angles A, B, C are respectively denoted by a, b & c. The six elements are not independent
but connected by the relation. A

(i) A+B+C=n
(i) S=a+b+c c b
(i) a+b+c;b+c>a;,c+a>b

B a C
In addition to these relations, the elements are of triangle are connected by some trigorometric relations.
Sine formula :
In any triangle ABC, the sides are proportional to the sines of the opposite angles, i.e,
a b c
sinA " sinB T sinC
Case — | :Let the triangle ABC be acute angled. AD is perpendicular t¢FBg-1).

AD

sin B :T , AD = b sin C; similarly AD = c sin B A
O bsinC=csinB

b Cc C
SNB = snee e Q) b

sinC

In the similar manner, we can prove that

b a
sinB ~ sinA e @) B D C
from eqution (1) and (2) a

a b C _
sinA ~ sinB ~ sinC Fig. — 1

Case -l : Let the triangle ABC be right angled trianglgg.2), A

OcCc =90°
sinC=1 c b

. a | b
sSinA=—,sinB=—
c c

a b o c

B 4
sinA ~ sinB ~ 1 ~ sinC Fig. -2
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Case —lll : Let the triangle ABC be an obtuse angle such th&t > 90°(Fig.3)

) AD
InAABD, sinB=——

AD = csin B ¢ A
. AD c :
InAACD,S|th—c)=T i !
AD=bsinC a
bsinC=csinB B a C D
b c :
sinB = sinC Fig.— 3
b a
Similarly SinB = sinA
a b c
sinA = sinB = sinc Hence proved
Cosine Formula : B

In any triangle ABC to find the cosine of an angle in terms of the sides
() Let A be an acute angle, draw BD perpendicular
to AC(Fig.4).
Then geometry we have
BC?= AB? + AC*— 2AC . AD

AD
=AB?2+ AC*—2AC.AB .——

"AB
org=k+c—2bccosA C b D A
b? +c” - & .
[] cos A= 2be Fig. — 4

(i) Let A be an obtuse angle, Draw perpendicular BD from B to CA produced.
Then from geometry, we hayEig.5) B
BC?= AB? + AC? + 2AC . AD
or&=k+c+2b.c. cos (180° - A)
or&g=p+c-2bccos A
b2 +c%— &2 C b A D
O COSA:Z—bc Fig.-5
(iii) Let A be right anglg[Fig. 6)
Then from geometry,
&=P+cassZA=90°
&= +c-2bccosA
0 cosA=cos90°=0
b? +c? - & C b A
2bc
Similarly it may be shown that Fig.— 6

2 2 2 2 2
a+c-b a+b-c
cosB=———and cosC=———
2ac 2ab

COS A=
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(C) Projection formula :

In any triangle ABC, rieve there

In (Fig.7 (i) a=bcosC+ccosB
A A
B D C B c D
Fig.7(i) Fig.7 (ii)
BC=BD+DCora=ccosB+bcosC
In Fig.7 (ii)
BC=BC-CD

BD
But ﬁZCOSBor BD =BA cos B=C cos B

CD _ o
and oA €0s(180% C¥ - cosC A
BC=BD-CD
a=ccosB-(-bcosC)=CcosB+bcosC
Fig.7(iii)
BC =BD C Fig.7(iii)

But E =cosB
BA

orBD=BAcosB=CcosB

a=CcosB+0=CcosB +bcos¢]cos C =cos 90°=0)

Similarly b=C cosA+acosC
C=acosB+bcosA

Area of a triangle (Herons formula) ;

The area of a triangle in given by,/s(s- a) (- b) (s ¢)
where 2s = a + b + c is the perimeter of the triangle.

More Formulae

A _ (s—b)(s-c) sin—Bz (s ¢)(s a)
\ bc AP ac
sinC C /(s a)(s- b)
2 ab
coéz s.(s— a),cosBz /s.(s— b)coy S.(s- ¢)
2 bc 2 ca 2 ab

Area of a triangle in terms of sides (Heron's Formula)

s Lbesna=l b 2 cos®
—2 C SIn —2 C. Sln2 COS2

b\/(s—b)(b—@ \/S(S—a)
=bc

bc
A= J{s-3(s N s
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Example -1 : In any triangle ABC show that
& (sin’B — sirtC) + b? (sirC — sirtA) C2(sinA — sir'B) = 0
b _ c _1
sinA sinB sinC K
= SinA = ka, sinB = kb, sinC = kc
Now L.H.S
(k% (? — @) + Kb? (2 — &) + kc? (2 - 17)
=k{@ -+ E-a +c@-p)}
=k*-0=0R.H.S
Example-2:IfA:B:C=1:2:3

Then show that sinA : sin B: sin C = 1\'@: 2
Proof: A:B:C=1:2:3(Given)
= A=K, B=2K,C=3K

Proof : We have

Tt
A+B+C=n:>6k=n:>k=g

0a=" =" c="
6

. ) . R | P | SR 1
~.SiInA:sinB:sinC :sm—g .Sln—g 1SIn= —

2
_1.43

= —. 1= .
> 5 1:4/3:2

B-C :
Example — 3 : In any triangle ABC prove that cos > =TSIn—

b+c . A
Proof: R.H.S—sSIin—
a 2

:ksinB+ksinC.SinA D._ a _ b _ c _ 0O
ksinA 2 H sinA sinB sinC

. : Zsinw.cosE
_SinB+sinC_ 2 2

sin A

.SinA

A
2Sin— .coS—
2 C

A B-C
cos— [lcos——
-__C 2 [ . B+C

cosé H =
2

= COST

—coséD
= 2E|

ASSIGNMENTS

COSA _
sinB.sinC
2. Provethatlf(a+b+c)(b+c-a)=3bc, prove tiad°
b+c _c+ta_ at b
5 6 7

1. Inany triangle ABC, Prove that

then sinA:sinB:sinC=4:3:2
O & 0O
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CHAPTER - 11

VECTORS

Introduction :

At present vector methods are used in almost all branches of science such as Mechanics, Mathematics,
Engineering, physics and so on. Both the theory and complicated problems in these subjects can be discussed in
a simple manner with the help of vectors. It is a very useful tool in the hands of scientists.

Physical quantities are divided into two category scalar quantities and vector quantities. Those quantities
which have any magnitude and which and not related to any fixed direction scalars. Example of scalars are
mass volume density, work, temperature etc. Second kind of quantities are those which have both magnitude
and direction. Such quantities are vectors. Displacement, velocity, acceleration, momentum weight, force etc.
are examples of vector quantities.

Representation of vectors :

Vectors are represented by directed line segments such that the length of the line segment is the magnitude
of the vector and the direction of arrow marked at one end indicates the direction of vector. A vector denoted by

IDDQ is determined by two points P, Q such that the direction of the vector is the length of the straight line PQ

and its direction is that from P to Q. The point P is called initial point of v%@})and Q is called terminal

points.

S

P Q

[ - O0- - -
Note : The length (magnitude or modulus) @B or a generally denoted myAB | or |a| thus g| = length

(magnitude or modulus ? or vecta

Types of vectors :

(i) Zero vector or null vector : A vector whose initial so terminal points are coincident is called zero or
the null vector. The modulus of a null vector is zero.

(i) Unit vector : A vector whose modulus in unity, is called a unit vector. The unit vector in the direction

of a vectorais denoted bya. Thus | =1
(iii) Like and unlike vector : Vectors are said to be like when they have same sense of direction and unlike
when they have opposite directions.
(iv) Collinear or Parallel vector : Vectors having the same or parallel supports are called collinear vectors.
(v) Co-initial vectors: Vectors having the same initial point are called co-initial vector.

(vi) Co-planner vector : A system of vector and said to be co-planner in their supports are parallel to the
same plane.

(vii) Negative of a vector : The vector which has the same Magnitude as the vechart opposite direction,

is called the negative ck and is denoted by . There if PO= a thenQP=- & .
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Operations on Vectors

Addition of Vectors :

Tringle Law of Addition of Two Vectors :

The law states that if two vectors are represented by the two sides of a triangle, taken in order, then their sum
(or resultant) is represented by the third side of the triangle but in the reverse order.

Let @, b be the given vectors. Let the vectaibe represented by the directed segnf@At and the vector

b be the directed segmerny‘é so that the terminal point A dd is the initial

-
a

Fig. 1
point of b . Then the directed segment OB (icmgé) represents the sum (or resultant Jaand b andis
written asa + b (fig. 2)

O-

Thus, OB= OA + AB = &+ D

=y

o

0 A

2l

Fig.2
Note : 1.The method of drawing a triangle in order to define the vector sum B) is calledtriangle law

of addition of the vectors.
2. Since any side of a triangle is less than the sum of the other two sides.

0- O- 0=
.. Modulus of OB is not equal to the sum of the modulus@f and AB .
Parallelogram Law of Vectors

If two vectorsa and b are represented by two adjacent sides of a parallelogram in magnitude and direction,

then their suma + b is represented in magnitude and direction by the diagonal of the parallelogram through their

common initial point.
O- 0-

Let aand b are two non-collinear vectors, representedd¥ and OB .
Then -
- - 0- o 0 0- 0O- a‘
a+ b= OA+ OB= OA + AC=0C (fig.3) B/ > C
—r
7 + b
g a
o b
0] > A
2 Fig. - 3

- - 0
i.e. Their suma + pis respesented by the diago@C of the parallelogram.
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Polygon Law of addition of Vectors
To add nvectorg, , g, » e a, We choose O as an origffig.4) and draw.
A, -
- a,
An—l A3
4)
&g
%
a’n IA2
9
An \/ B
A
o 4
Fig.— 4
0 - - 0- - 0oo- -

0 - ood -
= OAL+A, A2 ttAnA
oogd - O- O- oood -

0 -
—(OA1+AA2)+AZA3 +.... A _ﬁn OAL+AA+. . +A A
0 - 0- ood -

T OAFAA A A = oA,

Hence the sum of vectoaa_ a2 ......
“polygon law of addition of vectors.
CoroIIary : From the polygon law of addition of vectors, we have
o - ooo - oo -
OA+A1A2+A£\ +on A A =OA —AQ

0- 0- 000 -

OA+AA +A A s+ #A nA #A O A O (Null vecton)
The sum of vectors determined by the sides of any polygon taken in order is zero.

Properties of Vectors Addition
(@B Vector Addition is Commulative :

If a and b be any two vectors, then

—

a, is represented by)D,&n . This method of vector addition is called

a+b b+a . 0.

Proof : Let the vectorsa and b be represented by the directed segme]ns and AB respectively so that
(fig.4)
o- - 0O-
a= OA, b=AB
0- 0- 0-

Now OB= OA +AB — OB a+bh
Complete the || gm OABC

O O- 4 0- O- -
ThenOC= AB=b andCB= OA=a

O 0 -
. OB = OC+ CB =b + a
From (1) and (2) , we have

a+ b= b+ a
2. Vector Addition is Associative.
If a, E) care any three vectors, théh+ (E) + 6) =(a+b)+ c.
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—

Proof : Let the vectorsa ,

that (fig.5)

- [ R 0 - 0O-
a:OA,b:AB, c=BC

- LS O- O~ O.
Thena+ (b+ c¢)= OA+(AB+BC)
O- [
=OA +AC [A Law of addition]
o-
=0C [A Law of addition]

- S O
. a+(b+ c)=0C........ Q)

N e

oL O- O-

Again, (2 +b)+c =(OA +AB)+ BC
Oo- 0O-

= OB+BC [A Law of addition]
O-

=0C [A Law of addition]

- - - 0-
s (a+b)+ c=0C....... 2
From (1) and (2), we get

§+(B+ E):(§+B)+ c

—

O0- 0~ 0o

b, c .be represented by the directed segmé&Ms, AB , BC respectively; so

59

Remarks : The sum of three vectord, b, cis independent of the order in which they are added and is

written as@+b+ c.

()

Existence of Additive Identity :

For any vectora, a+Q= a, whereQ is a null (zero) vector.
- 0-

- O
Proof : Let the vector@ be represented by the directed segn@At; so thata =OA

- [
Also let the Zero VectoO be represented by the directed segnieft;

- O -
So thatO = AA

N 0O- 0-

Then a+0= OA+AA

0
OA [By Triangle law of addition]

=a

Thus, a+é =a

Note : In view of the above property, the null vector is called the additive identity.

Property 4 : Existence of Additive Inverse

For any vectora , there exists another vectora- such that
a+(a)=0

- - 0- -
Proof : Let OA = @, there exists anothekO = - A

- - o 0- O- -
. a+(_ a): OA +AO =00= O[ByALaW]
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Note : In view of the above property, the vector @) is called theadditive inverseof the vector .
Substraction of Vectors :
If & and b are two given vectors, then the substractiorbdfom a(denoted bya— b) is defined as

addition of —Bto a.

ie.a-b=a+(-b)
*. Itis clear that

Multiplication of a Vector by a Scalar

If a is any given vector and m is any given scalar, then the prodigcoma m of the vector a and the

scalar m is a vector whose

ol

() Magnitude = |m| times that of the vectct.
In other words, ma = |m| x|a|
=mx|alifm>0
=-mx|alifm<0
(i) Support is same or parallel to that of the supporé of
and (iii) Sense is same to that afif m > 0 and opposite to that &f if m < 0.
Geometrical Representation :

0-
Let the vectora be represented by the directed segnfsiat
Case | .Let m > 0. Choose a point C and AB on the same side of A as B such that

0~ o~ )
|AC|=m |AB |, (fig.6)

\/mi
8
o

we
@!

(m>0)
Fig. — 6

- 0-
Then the vectomna is represented baC .
Case Il : Let m<0. Choose a point C on AB on the side of A opposite so that of B such(tigat)

—> -
ma a
—e L >
C A B
Fig. —7
IACI=m, PBI

Then the vecton;Dn}j1 is represented bxkc.
Linearly Dependent and Independent Vectors

Two non-zero vectorg and b are said to bénearly dependentif there exists a scalar+Q), such thata

This can be the case if and only if the vectérandE) are parallel.

If the vectorsaand b are nofiinear dependentthey are said to be linearly independent and in this case

aand b are not paraIIeI vectors

Thus, if a= AB b= BC then aand b are linearly dependent if and only if A, B, C lie in a straight line;

othewise they are Ilnearly independent.
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Properties of Multiplication of a Vector by a Scalar
() Associative Law

O
If a is any vector and m, n are any scalars, theman(= mn (a)
0 -
Proof : If any one or more of m, n or a are zero, thema( = mn (a)[ . Each side =0]

While if m# 0, n# 0, a# 0, then the following four cases arise :
i m>0,n<0 (ii) m<0,n>0

@ii) m>0,n>0 (iv) m<0,n<0

Case (I) :\Whenm>0,n<0

- 0
Let a be represented by the directed line segnfgait (fig .8)

_)
a
—_— ¢ — O —

D" D C A B
Fig. 8 .
Since n < 0, take a point C on AB on the side of A opposite to that of B such(lheﬂepresentqu,g1

. O 0-

i.e]AC|=Inl B : :

Since m > 0, take point D on AB on the same side of A as C Alxtrepresents mfa)

) o- o- O-

i.e. JAD | =m |AC |=m|n|aB |..-...[1]

Again, since m >0, n <0, so that mn < 0; take a pdimiDAB on the side of A opposite to that of B such that
AD’ represents |maj .

; 0~ 0 - o o-

i.e,JAD’ | = [mn| AB | = |m[n[aB [=m [n[AB | [|m]=mas m>0]

O- 0
~JAD' |=m|n| |aB] --.--- (2)
From (1) and (2), we get
O 0-

|AD" | = |AD | :

which shows that D an@’ coincide, proving that m (15) = (mn)a

Proceeding on the same lines, the other three cases can be similarly proved.
(2) Distributive I_Daw : le m, n are any scalars ardl is any vector, then

(m+n)a = Mma+ na

Proof : If a= 0 or m, n are both zero, then

Oo- 0O- -
(m+n)a = ma+ na[-- Each side =0]

Butif a#(, the following three cases arise :
1) m+n>0 (2 m +n=0and
(3 m+n<o0

Case-|l.Herem+n>0
The following sub-cases arise :
i) m>0,n>0 (ii) m>0,n<0

and (ii) m<0,n>0

[,
Let a be represented by the directed segn/&it.
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O-
Since m + n > 0, take a point C on AB on the same side of A as B sucAGha¢presents (m + nj.
(fig. 9)

_)
a
& > & > & >
A D D’ C C B
Fig.— 9
O o-
i.e. |[AC|=(m+n)|AB |.......... @
O O-
Sub-%ase(i) Siné:e m > 0 , take a point D on the same side of A as B suchBhagpresentma.
i.e. [AD|=m]|AB | .......... (2) . .
Again since n > 0, take a point bn the same side of A as B such tA®' representsna .
o- O-
i,e. [AD'|=n|AB |.......... 3
O0- 0O- 0-

Thus, Ma+ na is represented bAC' (where ¢ is on the same side of A as B) such that
|AC'| = [AD | + IAD' |

—m|[AB [+n|AB | [From (2) and (3)]

— JAC = (M + 1) AB [ oo (4)

.- From (1) %nd (4D),Aié' | = |E\é| , which shows that C and €oincide, proving that

(m+n)a = Ma+na

The other sub-cases of case (1) may be similarly proved.
Proceeding in the same way, we can prove the result for case 2 and case 3 %so.
case 2 and 3 also. 7

3. If a and b are any two vectors and m is a scalar, then
- - 0o-
m(a+b) = ma+mb.(fig.10) 0 = A
a Fig. — 10

Position Vector of a Point

Let O be any point called the origin of reference or simple the origin. Let P be any other point.

Then OPis called the position vector of the point P relative to the p
point O.
Hence, with the choice of O as the origin of reference, a vector can N
be associated to every point P and convel$iglyl1) P
Fig. — 11
Representation of a vector in terms of the position vectors of its end points: 7 O 5

Let A and B be two given points aral, b the position vectors of A, B
respectively relative to a point O as the origin of reference; sdfitpat2)

O- R 0. -

OA=a andOB=b

.. FromAOAB

O- 0O- 0

OA+AB =OI§ [By A law of addition]

=¥
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O- I - o
= AB= OB-0OA=b-a
0-
Note : AB = Position vector B — Position vector A.
SECTION FORMULA :
Statement . If aand b are the position vectors of two points A and B, then the point C which divides
AB in the ratio m : n, where m and n are positive real numbers, has the position vector.
- _na+mb
C=—m
m+n - .
Proof : Let O be the origin of reference and &tand b be the position vectors of the given points A and B
so that(fig.13)
0o- - 0= = A m C n B
OA=a, OB= b \ /
Let C divide AB in the ratiom : n rg N
N
AC _m a b

m o
Henceﬁ is positive or negative according as C divides AB internally or externallyFig. — 13

[,
We have to express the position veayr of the point C in terms of those of A and B.
We re-write (1) as, nAC = mCB.
0- O- 0- 0-
And obtain the vector equality’AC = mCB. Expressing the vectoC andCB in terms of the position
vectors of the end points, we obtain
[ o- 0- 0O-

n(OC- OA) =m (OB-0C)

O0- [, [,
= (m+n)OC=nOA+MOB

0- O- - -
0~  nOA+mOB_na+mb

= 0C=
m+n m+n
Mid-point formula : If C is the mid-point of AB.thenm:n=1:1
- +
.. The position vector of c is given l®C = 1@21[b
. o._a+b
i.e. OC=
2

Hence the position vector of the mid point of the join of two points with position veetcasd b is

a+b

1 0. oo
or 2 (OA+OB)
Example — 1 : Prove that
M la+tbl<lallpl () lal-Ibl<la-bl (i) la-bl<lal+|b]
Solution: (i) When A, B, C are not -collinear, drawA®BC such that(fig.14)

- O- - O- 2

a=AB and p=BC 2%
- - O-

Thena+p=AC [By Addition Law]

.. AC < AB + BC (As sum of two sides is greater than the third side) A= B
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0 0 0 -
~|ACI<IAB|+IBCI
la+bl<lal+D]......(1)

0 - O- - 0 - -
[-- AB=a, BC=b andAC= a+b]
When A, B and C are collinear, thefig.15)

o o- -
a=AB, b=BC
R o N
a+b=AC

2
=l

Fig.— 15
-+ AC=AB +BC

0- o O-
-~ |AC|=|AB|+|BC|
—la+b|=]a[+b|
Combining (1) and (2), we get
la+b|<|a+ b|

i) lal=]a-b+D|=|(@=D)*D|ou... )
But| (a—b)+ b|<[a=b D . @)
From (1) and (2), we get
|aj<|a-b|+|b|
|al-Ib|<|a-b )

(i) |a-bl=la+(-b)<|al+-b]
But|-b|=|b]|
~la=b|<|al +|b].

Example — 2 Prove by vector method that the lines segment joining the middle points of any two sides of a
triangle is parallel to the third side and equal to half of it.

Solution: Let ABC be a triangle in which D and E are the mid-points of AB and AC respectively.

(fig.16)
o- 0- 0. 1o, 1o,
DE = DA + AE :EBA‘*‘EAC
A
_ +,0- U _EDH
—Z(BA+AC)—2BC
. DE||BC D E
0. 1%* 1| o. 1
Also, DE = pE| =|,BC = |, | |BC|=;BC -
B D C
Fig. — 16

1
Hence DE || BC and DE EBC'
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Components of a Vector in Two Dimensions Y
Let XOY be the co-ordinate plane let P(x, y) N P (x,y)
be a point in this plane. Join P. Draw Y
PM L OX, and PNL OY.(fig.17) N
Let { and j be unit vectors along OX and OY. S > v X
Thenom =x{ and ON =Y]. Fig. — 17

OM andoN are called the vector components gp along x-axis and y - axis respectively.
Thus the component ofp along x- axis is a vector x, whose magnitude is | x | and whose direction is along
OX and OX according as x is positive or negative.
And, the component obp along y - axis is a vector y, whose magnitude is | y | and whose direction is along
OY or OY according as y is positive or negative.
OP = OM *+ MP= OM+ ON =Xj + Yj
Thus the position vector of the point P(x, y) & % ]
OP = OM?+ MP? = x* + y?
= 0P =,/x*+ y2
. 3 — 2 2
S |oP|={x* +y _ v
Components of a vector along the co-ordinate axes.
Let A(x,,y,) and B (%, y,) be any two points in XOY plane.
Draw AD 1L OX, (fig.18)
BE L OX AF_L BE, APL OY and BQL OY
Clearly AF = (x — x)
and PQ =FB = (y-,)
Let i and] be unit vectors along x-axis and y-axis respectively.

O- A
Then AF = (x,—x) i

- 0O- ~
and PQD: FB = v, - y) )
Clearly AB = AF + FB = (X,—X) i+ (AN Z P (X, ¥.2)

Then component oAB along x - axis = (x— X, i
And component ofaAB along y - axis = (y—,) i
Z z
O-
Also | AB | = AB = AFZ + FBZ = (X, ~Xp)? +(¥, —Y,)? oy
Components of Vector in three dimensions : Y
Let OX, OY and OZ be three mutually perpendicular lines, V X

taken as co-ordinate axis. Then the planes XOY, YOZ and ZO
are respectively known as XY plane, YZ plane and ZX plapé: _ y
(fig.19) Fig. =19
Let P be any point in space. Then the distances of P from YZ- plane. ZX — plane and XY - plane are respectively
called x-cordinate, y-cordinate and z-cordinate of P and we write P as P(x, y, 2)
Position Vector of Point in space :
Let P(x, y, z) be a point in space with reference to three co-ordinate axes. OX, OY and OZ. Though P draw
planes parallel to yz-plane zx-plane and xy-plane meeting the axes OX, OY and OZ at A, B and C respectively.

The OA=x,0OB=yand OC =z
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Let:, j,k be unit vector along OX, OY and OZ respectiveljg. 20)

[ ~ O- A~ O- ~
ThenOA =xi, OB =yj, OC = zk z
L. 0. O- - O- T
NOWoP:QP+QP:(OA+AQ)+QP C
(OA+ OB+ OC) [ AQ =OBand QP= o% A
P
N ~ ~ o ‘|2 ]
=Xi +yl +zk I B Y
Thus, the position vector of a point ©
. A Q
P (x, v, z) is the vector (x+Yy] + z| .
%y, 2) x+y k) X Fig—20

Now OP = O + QF = (OA? + AQ?) + QP
=(OA*+ OB +0C) =X +y + 7

|OP| = OP =,[x? +y2+ 22
If a=ai +al +ak,
lal=yal+&+4
Components of Vector tf (D)f:, is the position vector of a point P(x, y, z) in space, then
%f;, =xi +y] +zk

The vectors X, y] , Z|; are called the components @b along x - axis y - axis and z-axis respectively.

ASSIGNMENTS

1. Show that the there points A(2, -1, 3), B (4, 3, 1) and C (3, 1, 2) are co-llinear.
2. Prove by vector method that the medians of a triangle are concurrent.

3. Find a unit vector in the direction oé& 6) WhereazAi+Aj—lA< & B:?—] +3k .
Scalar or Dot Product
Definition :

The scalar product of two vectogsand b with magnitude a and b respectively, denote(ﬁbf) , is defined
as the scalar ab cfs, wheref is the angle between cﬁ and Bsuch thatx0<m.

Thus a. b= ab cos.

B
Geometrical Meaning of Scalar Product
As we see in above figure th@ig.21)
|[OM| = |OB| co$ = |B| cosB = projection of Bon a ?
- ab=la| (p| cosd)
= modulus ofa x projection of Bon awhich gives, 0
.- > A
. alb 0 a M

projection ofpon a = Iél Fig. — 21
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Similarly , if we drop a perpendicular from A on OB such that N is the foot of the perpendicular,
then(fig.22) B

ON = projection of ;;1 on B and ON = OA co$®

N
=| al cosb=Now a . b =|b|(Ja]cosd)
= magnitude ofB x projection ofa on Bwhich gives that ?
.. a .
projection ofa on p= " - R Fig. — 22
|b] 0 7 A

Thus we can conclude that

() The dot product of two vectors is equal to the magnitude of one vector multiplied by the projection of
the other on it.

(i) The (scalar) projection of one vector on another.
Dot product of vectors

= Magnitude of the vectof" which the projection is taken.
3. Commutative and distributive Properties of Scalar Product :

1. Scalar product of two vectors obeys commutative law i.e.,
alb= Hbla
2. Scalar product obeys distributive law i.e.

al{b+ = dl> alc
Other properties of scalar product : Apart from commutative and distributive properties.
Scalar product has some ther properties as follow :

1 ama=|d =i0=jj=kK =1

Hencei[j=jK =k D=0 andjl =k =i K =0
3. Scalar product in terms of components :

If a=a {+aj+ak andb=b, j+b,j+b k

thena. b= ab, +ab, + ab,.

4. Angle between two non-zero vectcﬂmnd b is given by co$ = @ =alb
ab
ab+ab+ahb
In terms of components cOs= \/af +a§+ %\/ l§+ l§+ @
. . ab. . . . ab
5.  Projection ofaon b is B| a,b and projection ofb ona is |~| =ab
a

6. |a+b|2 —|a|2+|b|2+2a b or(a+b)2— 2 +b2 +2a.b
7. |a b|2 —|a|2+|b|2 2a.b or (a b)2— 2 +b2 2a b
8. (a+b).(a-b)=|aF- lp P or (@a+b).(a-b)= g2 - p?
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Components of a Vectorr along and perpendicular to a given Vectora in the Plane of a and r .

. . laor |-
The resolved part of in the direction ofd = | - -
alla
rta |-
The resolved part of r is perpendicular to Islja
a

Example —1:Find the scalar and vector projections of - j -k onj +j +3k

A

Solution : Given a=i-j-k andb=3i -] - &

&

Scalar projection ofa on p = 22

_ (?—j—l?)(é+f+9£) 3-1-3 -1

,/32+12+32 \/1_9 19

Vector Projection ofg on
_( -1 J 3i+j+ XK
V19) (V2 + 12+ 3
_ 3 +J +X
JE 19 19

ASSIGNMENTS

1. é,ﬁb,ﬁc are there rutually perpendicular vectors of the same magnitude prm(é%hb& E) is equally
inclined in the vectors b & c.
2. Find the scalar and vector projectioni)fon b wherea :Ai—Aj —k andb =i+] +3Kk

3. Find the angle between the vectmr - + j-2k & b=i+ 2] -k
Vector Product or Cross Product
The vector product of two vector and p denoted bya x p is defined as the vectag X b =|a||b |

sind . h wheref is the unit vector perpendicular to boghand 5 andd is the angle fromg and p such thata

and p andh are the right handed system.
Angle between two vectors :

Let O be the angle betweeg andp . The 3 x p = (ab sif) f,



Engineering Mathematics — | 69

where [a|=aandp =D
~la xb|=(absi®)|N|=ab sid
[ 1A]=1]
absi®=|ag X p|
- - laxb
sirp =1ax by _ 122!
ab lallb]

|ax B|
lallbl
Unit vector perpendicular to two vectors :
Clearly (a x p)is avector, perpendicular to each one of the vegtand p , So a unit vectoft perpendicular

0 = sim?

to each one of the vectef and p is given byh = IH 1
ax
Properties of vector product :
(i) Vector product is not commutative
ie.a Xp#pX a
(i) Foranyvecrorsg andp i.e.(a xp)=—-(pb % a)

(i) For any scalar m provethat(gn) X b =m(a X p)=a *(Mmp)

(iv) Forany vectorsa ,b,c presentax(p+c)=(axb)*+(axc)

(v) Forany three vectorg ,b,c a*(b-c)=(axb)—-(axc)

(vi) The vector product of two parallel or collinear vectors is zero.

(vii) For any vectora is axa = 0

(viij)if ax p =0,theng =g orp = 0 or aandp are the parallel or collinear.

(ix) If the vectors 3 and p are parallel (or collinear) théh= 0 or 180°, sii =0

Vector product of orthonomal Triad of unit vectors : 7
Vector products of unit vectors, j, k from k
a right-handed system of mutually perpendicular vect(fig.23) k fi
PxjEk==jx;
jx k=7 =-kxj >
kxi=j=—} xk |

Geometrical Interpretation of Vector Product or Cross Product

0- - —>
o- - a

LetOA:aandOB:b B

L C
Thenaxb=(a||b]|sinb) f N

S . b 2
=lal(lb|sinb) a=]a|[BM| A

ST N
Now |axb|=|a||BM| 0FM A

= Area of the parallelogram with sidésand 6 . (fig 24) Fig. —24
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Therefore,a x b is a vector whose magnitude is equal to area of the parallelogram witheszhet) .

1 Oo- O-
From this it can be concluded that AreaA&BC = §|AB xAC|.

Example — 1: Find the area of parallelogram whose adjacent sides are determined by the vectors.
a=i+2j+3kand b =3] —2] +k

i) K
, .- 1 2 3 . As
Solution: We haveg X p = 3 -2 1 = (87 —10j+ 4k)

.. Required area =g x p |
= /g2 +(-10%+ 4> = J180 = 65 sq. units

Example — 2:Find the area of a parallelogram whose diagonals are determined by the vectors.
a=3f{+J]-2kandb = -3 +4k

~ ~

i K
1 -2

i

, . _|3
Solution: We haveg x p =

1 -3 4

= (=27 — 14— 10k)

. Required area % lax bl

- % V(22 +(-142+(-19% = % J300 = 5v35sq. units.

ASSIGNMENTS
Find the area of the triangle whose adjacant sidesare+ 2]+ 3k & b=-3i- 2]+ k
Find a unit vector perpendicular to both the veater2i+ j—k & p = 3i ~j+3k

Find the angle between the vectars 2Ai—Aj+ 3k & B=T+3] +2Kk

O % 0



