
1

DISCIPLINE: ELECTRONICS & TELECOMMUNICATION

ENIGINEERING SEMESTER : V

Subject: Advanced Microprocessor & VLSI

Content Developed by :

 Er. Srikanta Sahu
 AMIE (India) Electronics &Telecom.,

M.Tech. Computer Sc., LMISTE, MIE

&

Er. Asman Kumar Sahu
B Tech Electronics &Telecom.

2

CHAPTER -1.

ADVANCED MICROPROCESSORS AND STANDARDS

1.1 The block diagram of advanced microprocessor, bus interface unit-

Microprocessor cache super scalar issue of instructions, integer unit-

floating point unit-MMU.

The 8086 CPU is organized as two separate processors, called the Bus Interface Unit

(BIU) and the Execution Unit (EU). The BIU provides various functions, including

generation of the memory and I/O addresses for the transfer of data between outside the CPU,

and the EU.

 The EU receives program instruction codes and data from the BIU, executes

these instructions, and store the results in the general registers. By passing the data back to

the BIU, data can also be stored in a memory location or written to an output device. Note

that the EU has no connection to the system buses. It receives and outputs all its data through

the BIU.

Superscalar Issue

A superscalar CPU architecture implements a form of parallelism called instruction-

level parallelism within a single processor. It therefore allows faster CPU throughput than

would otherwise be possible at a given clock rate. A superscalar processor executes more

than one instruction during a clock cycle by simultaneously dispatching multiple instructions

to different functional units on the processor. Each functional unit is not a separate CPU core

but an execution resource within a single CPU such as an arithmetic logic unit, a bit shifter,

or a multiplier.

In Flynn's taxonomy, a single-core superscalar processor is classified as an SISD

processor (Single Instructions, Single Data), while a multi-core superscalar processor is

classified as an MIMD processor (Multiple Instructions, Multiple Data).

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Parallel_computer
http://en.wikipedia.org/wiki/Instruction-level_parallelism
http://en.wikipedia.org/wiki/Instruction-level_parallelism
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Multiplication_ALU
http://en.wikipedia.org/wiki/Flynn%27s_taxonomy
http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/MIMD

3

Block diagram of the 8086 Central Processing Unit (CPU)

While a superscalar CPU is typically also pipelined, pipelining and superscalar

architecture are considered different performance enhancement techniques.

The superscalar technique is traditionally associated with several identifying

characteristics (within a given CPU core):

 Instructions are issued from a sequential instruction stream

 CPU hardware dynamically checks for data dependencies between instructions

at run time (versus software checking at compile time)

 The CPU processes multiple instructions per clock cycle

http://en.wikipedia.org/wiki/Instruction_pipeline
http://en.wikipedia.org/wiki/Data_dependencies
http://en.wikipedia.org/wiki/Compile_time

4

(Simple superscalar pipeline. By fetching and dispatching two instructions at a time, a

maximum of two instructions per cycle can be completed. (IF = Instruction Fetch, ID =

Instruction Decode, EX = Execute, MEM = Memory access, WB = Register write back, i =

Instruction number, t = Clock cycle [i.e., time])

Memory management unit

 A memory management unit (MMU), sometimes called paged memory

management unit (PMMU), is a computer hardware unit having all memory references

passed through itself, primarily performing the translation of virtual memory addresses to

physical addresses. It is usually implemented as part of the central processing unit (CPU), but

it also can be in the form of a separate integrated circuit.

 An MMU is effectively performing the virtual memory management, handling

at the same time memory protection, cache control, bus arbitration and, in simpler computer

architectures (especially 8-bit systems), bank switching.

 Modern MMUs typically divide the virtual address space (the range of

addresses used by the processor) into pages, each having a size which is a power of 2, usually

a few kilobytes, but they may be much larger. The bottom bits of the address (the offset

within a page) are left unchanged. The upper address bits are the virtual page numbers.[2]

 Page table entries

 Most MMUs use an in-memory table of items called a "page table," containing

one "page table entry" (PTE) per page, to map virtual page numbers to physical page

numbers in main memory. An associative cache of PTEs is called a translation lookaside

buffer (TLB) and is used to avoid the necessity of accessing the main memory every time a

virtual address is mapped. Other MMUs may have a private array of memory[3] or registers

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Memory_protection
http://en.wikipedia.org/wiki/CPU_cache
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Arbiter_%28electronics%29
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Bank_switching
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Page_%28computer_science%29
http://en.wikipedia.org/wiki/Kilobyte
http://en.wikipedia.org/wiki/Memory_management_unit#cite_note-ucsd-lecture-2
http://en.wikipedia.org/wiki/Page_table
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Memory_management_unit#cite_note-3

5

that hold a set of page table entries. The physical page number is combined with the page

offset to give the complete physical address.

 A PTE may also include information about whether the page has been written

to (the "dirty bit"), when it was last used (the "accessed bit," for a least recently used (LRU)

page replacement algorithm), what kind of processes (user mode or supervisor mode) may

read and write it, and whether it should be cached.

 Sometimes, a PTE prohibits access to a virtual page, perhaps because no

physical random access memory has been allocated to that virtual page. In this case, the

MMU signals a page fault to the CPU. The operating system (OS) then handles the situation,

perhaps by trying to find a spare frame of RAM and set up a new PTE to map it to the

requested virtual address. If no RAM is free, it may be necessary to choose an existing page

(known as a "victim"), using some replacement algorithm, and save it to disk (a process

called "paging"). With some MMUs, there can also be a shortage of PTEs, in which case the

OS will have to free one for the new mapping.

 The MMU may also generate illegal access error conditions or invalid page

faults upon illegal or non-existing memory accesses, respectively, leading to segmentation

fault or bus error conditions when handled by the operating system.

1.2 Memory Hierarchy – Register file –cache-address mapping- virtual

memory and paging segmentation.

The term memory hierarchy is used in the theory of computation when discussing

performance issues in computer architectural design, algorithm predictions, and the lower

http://en.wikipedia.org/wiki/Dirty_bit
http://en.wikipedia.org/wiki/Least_recently_used
http://en.wikipedia.org/wiki/Page_replacement_algorithm
http://en.wikipedia.org/wiki/User_mode
http://en.wikipedia.org/wiki/Supervisor_mode
http://en.wikipedia.org/wiki/Cache_%28computing%29
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/Page_fault
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Invalid_page_fault
http://en.wikipedia.org/wiki/Invalid_page_fault
http://en.wikipedia.org/wiki/Invalid_page_fault
http://en.wikipedia.org/wiki/Segmentation_fault
http://en.wikipedia.org/wiki/Segmentation_fault
http://en.wikipedia.org/wiki/Segmentation_fault
http://en.wikipedia.org/wiki/Bus_error
http://www.wikipedia.org/wiki/Theory_of_computation

6

level programming constructs such as involving locality of reference. A 'memory hierarchy'

in computer storage distinguishes each level in the 'hierarchy' by response time. Since

response time, complexity, and capacity are related, the levels may also be distinguished by

the controlling technology. The many trade-offs in designing for high performance will

include the structure of the memory hierarchy, i.e. the size and technology of each

component. So the various components can be viewed as forming a hierarchy of memories

(m1,m2,...,mn) in which each member mi is in a sense subordinate to the next highest

member mi-1 of the hierarchy. To limit waiting by higher levels, a lower level will respond

by filling a buffer and then signaling to activate the transfer.

There are four major storage levels.

This is a most general memory hierarchy structuring. Many other structures are

useful. For example, a paging algorithm may be considered as a level for virtual memory

when designing a computer architecture.

 Adding complexity slows down the memory hierarchy.

 CMOx memory technology stretches the Flash space in the memory hierarchy

 One of the main ways to increase system performance is minimising how far

down the memory hierarchy one has to go to manipulate data.

 Latency and bandwidth are two metrics associated with caches and memory.

Neither of them is uniform, but is specific to a particular component of the memory

hierarchy.

 Predicting where in the memory hierarchy the data resides is difficult.

 ...the location in the memory hierarchy dictates the time required for the

prefetch to occur.

Application of the concept

The memory hierarchy in most computers is:

 Processor registers – fastest possible access (usually 1 CPU cycle), only

hundreds of bytes in size

 Level 1 (L1) cache – often accessed in just a few cycles, usually tens of

kilobytes

 Level 2 (L2) cache – higher latency than L1 by 2× to 10×, often 512 KiB or

more

 Level 3 (L3) cache – higher latency than L2, often 2048 KiB or more

 Main memory – may take hundreds of cycles, but can be multiple gigabytes.

Access times may not be uniform, in the case of a NUMA machine.

http://www.wikipedia.org/wiki/Computer_programming
http://www.wikipedia.org/wiki/Locality_of_reference
http://www.wikipedia.org/wiki/Computer_storage
http://www.wikipedia.org/wiki/Virtual_memory
http://www.wikipedia.org/wiki/Computer_architecture
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Memory_hierarchy.html
http://www.wikipedia.org/wiki/KiB
http://www.wikipedia.org/wiki/KiB
http://www.wikipedia.org/wiki/Non-Uniform_Memory_Access

7

 Disk storage – millions of cycles latency if not cached, but very large

 Tertiary storage – several seconds latency, can be huge

Register file

A register file is an array of processor registers in a central processing unit (CPU).

Modern integrated circuit-based register files are usually implemented by way of fast static

RAMs with multiple ports. Such RAMs are distinguished by having dedicated read and write

ports, whereas ordinary multiported SRAMs will usually read and write through the same

ports.

The instruction set architecture of a CPU will almost always define a set of registers

which are used to stage data between memory and the functional units on the chip. In simpler

CPUs, these architectural registers correspond one-for-one to the entries in a physical register

file within the CPU. More complicated CPUs use register renaming, so that the mapping of

which physical entry stores a particular architectural register changes dynamically during

execution.

Implementation

The usual layout convention is that a simple array is read out vertically. That is, a

single word line, which runs horizontally, causes a row of bit cells to put their data on bit

lines, which run vertically. Sense amps, which convert low-swing read bitlines into full-

swing logic levels, are usually at the bottom (by convention). Larger register files are then

sometimes constructed by tiling mirrored and rotated simple arrays.

Register files have one word line per entry per port, one bit line per bit of width per

read port, and two bit lines per bit of width per write port. Each bit cell also has a Vdd and

Vss. Therefore, the wire pitch area increases as the square of the number of ports, and the

transistor area increases linearly. At some point, it may be smaller and/or faster to have

http://www.wikipedia.org/wiki/Disk_storage
http://www.wikipedia.org/wiki/Tertiary_storage
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Instruction_set_architecture
http://en.wikipedia.org/wiki/Register_renaming
http://en.wikipedia.org/wiki/Bit_cell
http://en.wikipedia.org/wiki/Sense_amplifier

8

multiple redundant register files, with smaller numbers of read ports, than a single register

file with all the read ports. The MIPS R8000's integer unit, for example, had a 9 read 4 write

port 32 entry 64-bit register file implemented in a 0.7 µm process, which could be seen when

looking at the chip from arm's length. In principle anything that could be done with a 64-bit-

wide register file with many read and write ports could be done with a single 8-bit-wide

register file with a single read port and a single write port. However, the bit-level parallelism

of wide register files with many ports allows them to run much faster -- they can do things in

a single cycle that would take many cycles with fewer ports or a narrower bit width or both.

Cache-address mapping

A cache in the primary storage hierarchy contains cache lines that are grouped into

sets. If each set contains k lines then we say that the cache is k-way associative. A data

request has an address specifying the location of the requested data. Each cache-line sized

chunk of data from the lower level can only be placed into one set. The set that it can be

placed into depends on its address.This mapping between addresses and sets must have an

easy, fast implementation. The fastest implementation involves using just a portion of the

address to select the set. When this is done, a request address is broken up into three parts

An offset part identifies a particular location within a cache line.

A set part identifies the set that contains the requested data.

A tag part must be saved in each cache line along with its data to distinguish different

addresses that could be placed in the set.

An Example

A computer uses 32-bit byte addressing. The computer uses a 2-way associative cache

with a capacity of 32KB. Each cache block contains 16 bytes. Calculate the number of bits in

the TAG, SET, and OFFSET fields of a main memory address.

Answer

Since there are 16 bytes in a cache block, the OFFSET field must contain 4 bits (24 =

16). To determine the number of bits in the SET field, we need to determine the number of

sets. Each set contains 2 cache blocks (2-way associative) so a set contains 32 bytes. There

are 32KB bytes in the entire cache, so there are 32KB/32B = 1K sets. Thus the set field

contains 10 bits (210 = 1K).

Virtual memory

Virtual memory is a technique that allows the execution of processes which are not

completely available in memory. The main visible advantage of this scheme is that programs

http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/R8000
http://en.wikipedia.org/wiki/Integer_%28computer_science%29
http://en.wikipedia.org/wiki/Bit-level_parallelism

9

can be larger than physical memory. Virtual memory is the separation of user logical memory

from physical memory.

This separation allows an extremely large virtual memory to be provided for

programmers when only a smaller physical memory is available. Following are the situations,

when entire program is not required to be loaded fully in main memory.

 User written error handling routines are used only when an error occured in

the data or computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a

small amount of the table is actually used.

 The ability to execute a program that is only partially in memory would

counter many benefits.

 Less number of I/O would be needed to load or swap each user program into

memory.

 A program would no longer be constrained by the amount of physical memory

that is available.

 Each user program could take less physical memory, more programs could be

run the same time, with a corresponding increase in CPU utilization and throughput.

10

Memory segmentation

 Memory segmentation is the division of a computer's primary memory into

segments or sections. In a computer system using segmentation, a reference to a memory

location includes a value that identifies a segment and an offset within that segment.

Segments or sections are also used in object files of compiled programs when they are linked

together into a program image and when the image is loaded into memory.

 Segments usually correspond to natural divisions of a program such as

individual routines or data tables so segmentation is generally more visible to the

programmer than paging alone.[1] Different segments may be created for different program

modules, or for different classes of memory usage such as code and data segments. Certain

segments may be shared between programs

 In a system using segmentation computer memory addresses consist of a

segment id and an offset within the segment. A hardware memory management unit (MMU)

is responsible for translating the segment and offset into a physical memory address, and for

performing checks to make sure the translation can be done and that the reference to that

segment and offset is permitted.

 Each segment has a length and set of permissions (for example, read, write,

execute) associated with it. A process is only allowed to make a reference into a segment if

the type of reference is allowed by the permissions, and if the offset within the segment is

within the range specified by the length of the segment. Otherwise, a hardware exception

such as a segmentation fault is raised.

 Segments may also be used to implement virtual memory. In this case each

segment has an associated flag indicating whether it is present in main memory or not. If a

segment is accessed that is not present in main memory, an exception is raised, and the

operating system will read the segment into memory from secondary storage.

 Segmentation is one method of implementing memory protection.[2] Paging is

another, and they can be combined. The size of a memory segment is generally not fixed and

may be as small as a single byte.[3]

 Segmentation has been implemented in several different ways on different

hardware, with or without paging. The Intel x86 implementation of segments does not fit

either model and is discussed separately below.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Primary_memory
http://en.wikipedia.org/wiki/Offset_%28computer_science%29
http://en.wikipedia.org/wiki/Object_file
http://en.wikipedia.org/wiki/Linker_%28computing%29
http://en.wikipedia.org/wiki/Program_image
http://en.wikipedia.org/wiki/Loader_%28computing%29
http://en.wikipedia.org/wiki/Memory_segmentation#cite_note-englander-1
http://en.wikipedia.org/wiki/Module_%28programming%29
http://en.wikipedia.org/wiki/Code_segment
http://en.wikipedia.org/wiki/Data_segment
http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Physical_memory#Primary_storage
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Hardware_exception
http://en.wikipedia.org/wiki/Segmentation_fault
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Memory_protection
http://en.wikipedia.org/wiki/Memory_segmentation#cite_note-ostep-1-2
http://en.wikipedia.org/wiki/Page_%28computer_memory%29
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Memory_segmentation#cite_note-3

11

 Segmentation without paging

 Associated with each segment is information that indicates where the segment

is located in memory— the segment base. When a program references a memory location the

offset is added to the segment base to generate a physical memory address.

 An implementation of virtual memory on a system using segmentation without

paging requires that entire segments be swapped back and forth between main memory and

secondary storage. When a segment is swapped in, the operating system has to allocate

enough contiguous free memory to hold the entire segment. Often memory fragmentation

results in there being not enough contiguous memory even though there may be enough in

total.

 Segmentation with paging

 Instead of an actual memory location the segment information includes the

address of a page table for the segment. When a program references a memory location the

offset is translated to a memory address using the page table. A segment can be extended

simply by allocating another memory page and adding it to the segment's page table.

 An implementation of virtual memory on a system using segmentation with

paging usually only moves individual pages back and forth between main memory and

secondary storage, similar to a paged non-segmented system. Pages of the segment can be

located anywhere in main memory and need not be contiguous. This usually results in less

paging input/output and reduced memory fragmentation

 1.3 Discuss Pipe lining – pipe line hazards Instruction level parallelism,

RISC versus CISC.

Pipelining

Implementation technique (but it is visible to the architecture) overlaps execution of

different instructions execute all steps in the execution cycle simultaneously, but on different

instructions Exploits ILP by executing several instructions ―in parallel‖ Goal is to increase

instruction throughput

http://en.wikipedia.org/wiki/Fragmentation_%28computing%29
http://en.wikipedia.org/wiki/Page_table

12

pipeline hazards is of three types 1. structural, 2. data, 3. Control place a ―soft limit‖

on the number of stages increase instruction latency (a little) write & read pipeline registers

for data that is computed in a stage time for clock & control lines to reach all stages all stages

are the same length which is determined by the longest stage stage length determines clock

cycle time.

Structural Hazards

Cause: Instructions in different stages want to use the same resource in the same

cycle e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions: more hardware (eliminate the hazard)

 • stall (so still execute correct programs)

 • less hardware, lower cost

 • only for big hardware components

13

Data Hazards

Cause:

• an instruction early in the pipeline needs the result produced by an instruction farther

down the pipeline before it is written to a register would not have occurred if the

implementation was not pipelined

Types

RAW (data: flow), WAR (name: antidependence), WAW (name: output)

HW solutions

• forwarding hardware (eliminate the hazard)

• stall via pipelined interlocks if canʼt forward Compiler solution

• code scheduling (for loads)

Control Hazards

Cause: condition & target determined after next fetch

Early HW solutions

• stall

• assume an outcome & flush pipeline if wrong

• move branch resolution hardware forward in the pipeline

Compiler solutions

• code scheduling

• static branch prediction

RISC versus CISC.

The simplest way to examine the advantages and disadvantages of RISC architecture

is by contrasting it with it's predecessor: CISC (Complex Instruction Set Computers)

architecture.

Multiplying Two Numbers in Memory

On the right is a diagram representing the storage scheme for a generic computer. The

main memory is divided into locations numbered from (row) 1: (column) 1 to (row) 6:

(column) 4. The execution unit is responsible for carrying out all computations. However, the

execution unit can only operate on data that has been loaded into one of the six registers (A,

B, C, D, E, or F). Let's say we want to find the product of two numbers - one stored in

location 2:3 and another stored in location 5:2 - and then store the product back in the

location

14

The CISC Approach

The primary goal of CISC architecture is to complete a task in as few lines of

assembly as possible. This is achieved by building processor hardware that is capable of

understanding and executing a series of operations. For this particular task, a CISC processor

would come prepared with a specific instruction (we'll call it "MULT"). When executed, this

instruction loads the two values into separate registers, multiplies the operands in the

execution unit, and then stores the product in the appropriate register. Thus, the entire task of

multiplying two numbers can be completed with one instruction:

MULT 2:3, 5:2

MULT is what is known as a "complex instruction." It operates directly on the

computer's memory banks and does not require the programmer to explicitly call any loading

or storing functions. It closely resembles a command in a higher level language. For instance,

if we let "a" represent the value of 2:3 and "b" represent the value of 5:2, then this command

is identical to the C statement "a = a * b."

One of the primary advantages of this system is that the compiler has to do very little

work to translate a high-level language statement into assembly. Because the length of the

code is relatively short, very little RAM is required to store instructions. The emphasis is put

on building complex instructions directly into the hardware.

The RISC Approach

RISC processors only use simple instructions that can be executed within one clock

cycle. Thus, the "MULT" command described above could be divided into three separate

commands: "LOAD," which moves data from the memory bank to a register, "PROD," which

finds the product of two operands located within the registers, and "STORE," which moves

data from a register to the memory banks. In order to perform the exact series of steps

described in the CISC approach, a programmer would need to code four lines of assembly:

LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

At first, this may seem like a much less efficient way of completing the operation.

Because there are more lines of code, more RAM is needed to store the assembly level

15

instructions. The compiler must also perform more work to convert a high-level language

statement into code of this form.

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock

complex instructions

Single-clock,

reduced instruction only

Memory-to-memory:

"LOAD" and "STORE"

incorporated in instructions

Register to register:

"LOAD" and "STORE"

are independent instructions

Small code sizes,

high cycles per second

Low cycles per second,

large code sizes

Transistors used for

storing

complex instructions

Spends more transistors

on memory registers

However, the RISC strategy also brings some very important advantages. Because

each instruction requires only one clock cycle to execute, the entire program will execute in

approximately the same amount of time as the multi-cycle "MULT" command. These RISC

"reduced instructions" require less transistors of hardware space than the complex

instructions, leaving more room for general purpose registers. Because all of the instructions

execute in a uniform amount of time (i.e. one clock), pipelining is possible.

1.4 Comparison of pentium processor with 80386 and 80486

 THE 80386 MICROPROCESSOR A 32-bit microprocessor introduced by

Intel in 1985. The chip of 80386 contains 132 pins. It has total 129 instructions. It has 32 bit

data bus 32 bit address bus. The execution of the instructions is highly pipelined and the

processor is designed to operate in a multiuser and multitasking. Software written for the

8088,8086,80186 and 80286 will also run on 386.

  The address bus is capable of addressing over 4 gigabytes of physical

memory. Virtual addressing pushing this over 64 terabytes of storage. 80387 coprocessor is

used. The processor can operate in two modes:  In the real mode physical address space is

1Mbytes and maximum size of segment is 64KB.  In the protected mode address space is

4G bytes and maximum size of segment is upto entire physical addressing space.

  80386 processor is available in 2 different versions.  386DX  32 bit

address bus and 32 bit data bus.  132 pins package.  386SX  24 bit address bus and 16 bit

16

data bus.  100 pin package.  The lower cost package and ease of interfacing 8 bit and 16 bit

memory and peripherals.  But the address range and memory transfer rate are lower than that

of 386DX.

 REGISTER SET-80386 It included all eight general purpose registers plus

the four segment registers. The general purpose registers were 16 bit wide in earlier

machines, but in 386 these registers can be extended to 32 bit. Their new names are

EAX,EBX,ECX and so on. Two additional 16 bit segment are included FS and GS.

 THE 80486 MICROPROCESSOR 80486 is the next in Intel’s upward

compatible 80x86 architecture. Only few differences between the 80486 and 80386, but

these differences created a significant performance improvement. 32 bit microprocessor and

same register set as 80386. Few additional instructions were added to its instruction set. 4

gigabyte addressing space .

 IMPROVEMENTS MADE IN 80486 OVER 80386 80486 was powered

with a 8KB cache memory. This improved the speed of 80486 processor to great extent.

Some new 80486 instructions are included to maintain the cache. It uses four way set

associative cache. 80486 also uses a co-processor similar to 80387 used with 80386. But this

co-processor is integrated on the chip allows it to execute instructions 3 times faster as

386/387 combination.

  The new design of 80486 allows the instruction to execute with fewer clock

cycles. 486 is packed with 168 pin grid array package instead of the 132 pin used for 386

processor. This additional pin’s made room for the additional signals. This new design of

80486 allows the instruction to execute with fewer clock cycles. These small differences

made 80486 more powerful processor.

 THE PENTIUM PROCESSOR

 WHY THE NAME PENTIUM ????? Intel wanted to prevent their

competitors from branding their processors with similar names, as AMD had done with their

Am486. The name Pentium is originally derived from the Greek word pente meaning five as

the series was Intel’s 5th generation micro architecture.

 THE PENTIUM PROCESSOR Upward compatibility has been maintained.

It can run all programs written for any 80x86 line, but does so at a double the speed of fastest

80486. Pentium is mixture of both CISC and RISC technologies. All the prior 80x86

17

processor are considered as CISC processor. The addition of RISC aspects lead to additional

performance improvement.

 It uses 64 bit data bus to address memory organized in Each bank can8

banks, each bank contains 512 MB of data. store a byte of data. BE7 BE6 BE5 BE4 BE3 BE2

BE1 BE0 B7 B6 B5 B4 B3 B2 B1 B0 64 bit Memory System of Pentium All these bank

enable signals are active low.

 IMPROVEMENTS OF PENTIUM OVER 80X86 Separate 8KB data and

instruction cache memory. Dual Integer pipelines are present but only single integer pipeline

is present in 80486. Branch Prediction Logic.

 CACHE MEMORY The Pentium contains two 8K-byte cache. An 8 byte

instruction cache, which stores the instruction. An 8 byte data cache, stores the data used by

the instructions. In the 80486 with unified cache, a program that was data intensive quickly

fills the cache, allowing less room for instructions. In Pentium this cannot occur because of

the separate instruction cache.

 PIPELINING It is a technique used to enable one instruction to complete

with each clock cycle. In Pentium there are two instruction pipelines, the U pipeline and V

pipeline. These pipelines are responsible for executing 80x86 instructions. During Execution

the U and V pipelines are capable of executing two integer instructions at the same time and

one floating point instructions.

  On a non pipelined machine 9 clock cycles are needed for the individual

fetch, decode and execute cycle. On a pipelined machine fetch, decode and execute

operations are performed in parallel only 5 cycles are needed to execute the same three

instructions. The First instructions needed 3 cycles to complete. Additional instructions

complete at rate of 1 per cycle.

  The Instruction pipelines are five-stage pipelines and capable of

independent operations. The Five-Stages are, PF – Pre-Fetch D1 – Instruction Decode D2 –

Address Generate EX - Execute Cache and ALU Access. WB – Write Back The U pipeline

can execute any processor instruction where as V pipeline only execute Simple Instruction.

 The Pentium -90 MHz The 80486 - 60 MHz The 80386 - 40MHz The

80286 - 25 MHzSPEED OF PROCESSORS

18

 1.5 Bus Standards:

The Centronics parallel interface is an older and still widely-used

standard I/O interface for connecting printer s and certain other devices to computers. The

interface typically includes a somewhat cumbersome cable and a 36- pin male and female

connector at the printer or other device. The cable plugs into a 25-pin parallel port on the

computer. Data flows in one direction only, from the computer to the printer or other device.

In addition to eight parallel data lines, other lines are used to read status information and send

control signals. Centronics Corporation designed the original Centronics parallel interface for

dot matrix printers. In 1981, IBM used this interface as an alternative to the slower one-bit-at-

a-time-serial interface.

When the Centronics parallel interface was first developed, the main peripheral was

the printer. Since then, portable disk drives, tape backup drives, and CD-ROM players are

among devices that have adopted the parallel interface. These new uses caused manufacturers

to look at new ways to make the Centronics parallel interface better. In 1991, Lexmark, IBM,

Texas instruments, and others met to discuss a standard that would offer more speed and bi-

directional communication. Their effort and the sponsorship of the IEEE resulted in the IEEE

1284 committee. The IEEE 1284 standard was approved for release in March, 1994.

The IEEE 1284 standard specifies five modes of operation, each mode providing data

transfer in either the forward direction (computer to peripheral), backward direction

(peripheral to computer), or bi-directional (one direction at a time).

 Compatibility mode is the original Centronics parallel interface and intended

for use with dot matrix printers and older laser printers. The compatibility mode can be

combined with the nibble mode for bi-directional data transfer.

 Nibble mode allows data transfer back to the computer. The nibble mode uses

the status lines to send 2 nibble s (4-bit units) of data to the computer in two data transfer

cycles. This mode is best used with printers.

 Byte mode uses software driver s to disable the drivers that control the data

lines in order for data to be sent from the printer to the computer. The data is sent at the same

speed as when data is sent from the computer to the printer. One byte of data is transferred

instead of the two data cycles required by the nibble mode.

 ECP mode (Enhanced Capability Port mode) is an advanced bi-directional

mode for use with printers and scanner s. It allows data compression for image s, FIFO (first

in, first out) for items in queue s, and high-speed, bi-directional communication. Data transfer

http://searchcio-midmarket.techtarget.com/definition/parallel
http://searchcio-midmarket.techtarget.com/definition/interface
http://searchcio-midmarket.techtarget.com/definition/input-output
http://whatis.techtarget.com/definition/printer
http://searchcio-midmarket.techtarget.com/definition/pin-or-PIN
http://searchnetworking.techtarget.com/definition/port
http://searchcio-midmarket.techtarget.com/definition/serial
http://searchstorage.techtarget.com/definition/tape-backup
http://searchcio-midmarket.techtarget.com/definition/CD-ROM
http://whatis.techtarget.com/definition/IEEE-Institute-of-Electrical-and-Electronics-Engineers
http://searchcio-midmarket.techtarget.com/definition/nibble
http://searchstorage.techtarget.com/definition/driver
http://whatis.techtarget.com/definition/scanner
http://searchstorage.techtarget.com/definition/compression
http://whatis.techtarget.com/definition/image
http://searchcio-midmarket.techtarget.com/definition/FIFO
http://searchcio-midmarket.techtarget.com/definition/queue

19

occurs at two to four megabytes per second. An advanced feature of ECP is channel

addressing . This is used for multifunction devices such as printer/fax/modem devices. For

example, if a printer/fax/modem device needs to print and send data over the modem at the

same time, the channel address software driver of the ECP mode assigns a new channel to the

modem so that both devices can work simultaneously.

 EPP mode (Enhanced Parallel Port mode) was designed by Intel, Xircom, and

Zenith Data Systems to provide a high-performance parallel interface that could also be used

with the standard interface. EPP mode was adopted as part of the IEEE 1284 standard. The

EPP mode uses data cycles that transfer data between the computer and the peripheral and

address cycles that assign address, channel, or command information. This allows data

transfer speeds of 500 kilobytes to 2 megabytes per second, depending on the speed of the

slowest interface. The EPP mode is bi-directional. It is suited for network adapters, data

acquisition, portable hard drives, and other devices that need speed.

 RS 232

In telecommunications, RS-232 is a standard for serial communication transmission

of data. It formally defines the signals connecting between a DTE (data terminal equipment)

such as a computer terminal, and a DCE (data circuit-terminating equipment, originally

defined as data communication equipment[1]), such as a modem. The RS-232 standard is

commonly used in computer serial ports. The standard defines the electrical characteristics

and timing of signals, the meaning of signals, and the physical size and pinout of connectors.

The current version of the standard is TIA-232-F Interface Between Data Terminal

Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data

Interchange, issued in 1997.

An RS-232 serial port was once a standard feature of a personal computer, used for

connections to modems, printers, mice, data storage, uninterruptible power supplies, and

other peripheral devices. However, RS-232 is hampered by low transmission speed, large

voltage swing, and large standard connectors. In modern personal computers, USB has

displaced RS-232 from most of its peripheral interface roles. Many computers do not come

equipped with RS-232 ports and must use either an external USB-to-RS-232 converter or an

internal expansion card with one or more serial ports to connect to RS-232 peripherals. RS-

232 devices are widely used, especially in industrial machines, networking equipment and

scientific instruments.

http://searchcio-midmarket.techtarget.com/definition/queue
http://searchcio-midmarket.techtarget.com/definition/queue
http://searchcio-midmarket.techtarget.com/definition/queue
http://searchcio-midmarket.techtarget.com/definition/queue
http://en.wikipedia.org/wiki/Telecommunications
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/Data_terminal_equipment
http://en.wikipedia.org/wiki/Computer_terminal
http://en.wikipedia.org/wiki/Data_circuit-terminating_equipment
http://en.wikipedia.org/wiki/RS-232#cite_note-eia-1
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Pinout
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Printer_(computing)
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Uninterruptible_power_supplies
http://en.wikipedia.org/wiki/Universal_Serial_Bus

20

Chapter 2. Introduction to VLSI

2.1 Historical Perspective

The electronics industry has achieved a phenomenal growth over the last few decades,

mainly due to the rapid advances in integration technologies and large-scale systems design.

The use of integrated circuits in high-performance computing, telecommunications, and

consumer electronics has been growing at a very fast pace. Typically, the required

computational and information processing power of these applications is the driving force for

the fast development of this field. Figure 1 gives an overview of the prominent trends in

information technologies over the next decade. The current leadingedge technologies (such as

low bit-rate video and cellular communications) already provide the end-users a certain

amount of processing power and portability. This trend is expected to continue, with very

important implications for VLSI and systems design. One of the most important

characteristics of information services is their increasing need for very high processing power

and bandwidth (in order to handle real-time video, forexample).

FIG.1(Prominent "driving" trends in information service technologies.)

21

2.2 VLSI DESIGN METHODOLOGIES AND VLSI DESIGN FLOW

VLSI DESIGN METHODOLOGIES

The demands of the rapidly rising chip complexity has created significant challenges

in many areas; practically hundreds of team members are involved in the development of a

typical VLSI product, including the development of technology,computer-aided design

(CAD) tools, chip design, fabrication, packaging, testing and reliability qualification. The

level of circuit performance which can be reached within a certain design time strongly

depends on the efficiency of the design methodologies, as well as on the design style two

different VLSI design styles are compared for their relative merits in the design of the same

product.

1. FULL CUSTOM DESIGN

2. SEMICUSTOM DESIGN

FULL CUSTOM DESIGN - Using the full-custom design style (where the geometry

and the placement of every transistor can be optimized individually) requires a longer time

until design maturity can be reached, yet the inherent flexibility of adjusting almost every

aspect of circuit design allows far more opportunity for circuit performance improvement

during the design cycle. The final

product typically has a high level of performance (e.g. high processing speed, low

power dissipation) and the silicon area is relatively small because of better area utilization.

But this comes at a larger cost in terms of design time.

22

 Figure -.2(Impact of different VLSI design styles upon the design cycle time and the

achievable circuit performance).

SEMI-CUSTOM DESIGN - Using a semi-custom design style (such as standard-

cell based design or FPGA) will allow a shorter design time until design maturity can be

achieved. In the early design phase, the circuit performance can be even higher than that of a

full-custom design, since some of the components used in semi-custom design are already

optimized. But the semi-custom design style offers less opportunity for performance

improvement over the long run, and the overall performance of the final product will

inevitably be less than that of a full-custom design.

In addition to the proper choice of a VLSI design style, there are other issues which

must be addressed in view of the constantly evolving nature of the VLSI manufacturing

technologies. Approximately every two years, a new generation of technology is introduced,

which typically allows for smaller device dimensions and consequently, higher integration

density and higher performance.

23

Figure 3. (Progressive performance improvement of a VLSI product)

VLSI Design Flow

The design process, at various levels, is usually evolutionary in nature. It starts with a

given set of requirements. Initial design is developed and tested against the requirements.

When requirements are not met, the design has to be improved. If such improvement is either

not possible or too costly, then a revision of requirements and an impact analysis must be

considered. The Y-chart (first introduced by D. Gajski) shown in Fig. 4 illustrates a design

flow for most logic chips, using design activities on three different axes (domains) which

resemble the letter "Y."

The Y-chart consists of three domains of representation, namely (i) behavioural

domain, (ii) structural domain, and (iii) geometrical layout domain. The design flow starts

from the algorithm that describes the behavior of the target chip. The corresponding

architecture of the processor is first defined. It is mapped onto the chip surface by

floorplanning. The next design evolution in the behavioral domain defines finite state

machines (FSMs) which are structurally implemented with functional modules such as

registers and arithmetic logic units (ALUs). These modules are then geometrically placed

onto the chip surface using CAD tools for automatic module placement followed by routing,

with a goal of minimizing the interconnects area and signal delays. The third evolution starts

with a behavioral module description. Individual modules are then implemented with leaf

cells. At this stage the chip is described in terms of logic gates (leaf cells), which can be

placed and interconnected by using a cell placement and routing program.

24

Figure 4.3. Typical VLSI design flow in three domains (Y-chart representation).

The last evolution involves a detailed Boolean description of leaf cells followed by a

transistor level implementation of leaf cells and mask generation. In the standardcell based

design style, leaf cells are pre designed (at the transistor level) and stored in a library for logic

implementation, effectively eliminating the need for the transistor level design. Figure 4

provides a more simplified view of the VLSI design flow, taking into account the various

representations, or abstractions of design: behavioral, logic, circuit and mask layout. Note

that the verification of design plays a very important role in every step during this process.

The failure to properly verify a design in its early phases typically causes significant and

expensive re-design at a later stage, which ultimately increases the time-to-market.

25

 2.3 Design Hierarchy, Design Styles & CAD Technology.

Design Hierarchy

The use of the hierarchy, or "divide and conquer" technique involves dividing a

module into sub-modules and then repeating this operation on the sub-modules until the

complexity of the smaller parts becomes manageable. This approach is very similar to

software development wherein large programs are split into smaller and smaller sections until

simple subroutines, with well-defined functions and interfaces, can be written. In the physical

domain, partitioning a complex system into its various functional blocks will provide a

valuable guide for the actual realization of these blocks on the chip.

 FIG- 5 (Structural decomposition of a 4-bit adder, showing the levels of hierarchy).

Regularity, Modularity and Locality

Regularity means that the hierarchical decomposition of a large system should result

in not only simple, but also similar blocks, as much as possible. A good example of regularity

is the design of array structures consisting of identical cells - such as a parallel multiplication

array.

Modularity in design means that the various functional blocks which make up the

larger system must have well-defined functions and interfaces. Modularity allows that each

26

block or module can be designed relatively independently from each other, since there is no

ambiguity about the function and the signal interface of these blocks.

Locality also ensures that connections are mostly between neighboring modules,

avoiding long-distance connections as much as possible. This last point is extremely

important for avoiding long interconnect delays

Computer-Aided Design Technology

CHAPTER 14 Computer-aided design (CAD) tools are essential for timely

development of integrated circuits. Although CAD tools cannot replace the creative and

inventive parts of the design activities, the majority of time-consuming and computation

intensive mechanistic parts of the design can be executed by using CAD tools. The CAD

technology for VLSI chip design can be categorized into the following areas:

* High level synthesis

* Logic synthesis

* Circuit optimization

* Layout

* Simulation

* Design rules checking

Synthesis Tools

The high-level synthesis tools using hardware description languages (HDLs), such as

VHDL or Verilog, address the automation of the design phase in the top level of the design

hierarchy.

Layout Tools

The tools for circuit optimization are concerned with transistor sizing for

minimization of delays and with process variations, noise, and reliability hazards. The layout

CAD tools include floorplanning, place-and-route and module generation. Sophisticated

layout tools are goal driven and include some degree of optimization functions.

Simulation and Verification Tools

The simulation category, which is the most mature area of VLSI CAD, includes many

tools ranging from circuit-level simulation (SPICE or its derivatives, such as HSPICE),

timing level simulation, logic level simulation, and behavioral simulation. Many other

simulation tools have also been developed for device-level simulation and process simulation

for technology development. The aim of all simulation CAD tools is to determine if the

designed circuit meets the required specifications, at all stages of the design process.

27

Chapter 3 .FABRICATION OF MOSFETS

3.1 Explain Fabrication processes (NMOS Fabrication, CMOS n-well process)

FABRICATION PROCESS

The process starts with the creation of the n-well regions for pMOS transistors, by

impurity implantation into the substrate. Then, a thick oxide is grown in the regions

surrounding the nMOS and pMOS active regions. The thin gate oxide is subsequently grown

on the surface through thermal oxidation. These steps are followed by the creation of n+ and

p+ regions (source, drain, and channel stop implants) and by final metallization (creation of

metal interconnects).

Each processing step requires that certain areas are defined on chip by appropriate

masks.As a result patterned layers of doped silicon, polysilicon, metal, and insulating silicon

dioxide. In general, a layer must be patterned before the next layer of material is applied on

the chip. The process used to transfer a pattern to a layer on the chip is called lithography.

Since each layer has its own distinct patterning requirements, the lithographic sequence must

be repeated for every layer, using a different mask.

 starts with the thermal oxidation of the silicon surface, by which an oxide layer of

about 1 m thickness, for example, is created on the substrate (Fig. (b)). The entire oxide

surface is then covered with a layer of photo-resist, which is essentially a light-sensitive,

acid-resistant organic polymer, initially insoluble in the developing solution (Fig.(c)).

 If the photo-resist material is exposed to ultraviolet (UV) light, the exposed areas

become soluble so that they are no longer resistant to etching solvents. To selectively expose

the photo-resist, we have to cover some of the areas on the surface with a mask during

exposure. Thus, when the structure with the mask on top is exposed to UV light, areas which

are covered by the opaque features on the mask are shielded. In the areas where the UV light

can pass through, on the other hand, the photo-resist is exposed and becomes soluble (Fig.

(d)).

The type of photo-resist which is initially insoluble and becomes soluble after

exposure to UV light is called positive photo-resist.

There is another type of photo-resist which is initially soluble and becomes insoluble

(hardened) after exposure to UV light, called negative photo-resist. If negative photo-resist is

used in the photolithography process,

28

FIG - Process steps required for patterning of silicon dioxide.

29

The areas which are not shielded from the UV light by the opaque mask features

become insoluble, whereas the shielded areas can subsequently be etched away by a

developing solution. Negative photo-resists are more sensitive to light, but their

photolithographic resolution is not as high as that of the positive photo-resists. Therefore,

negative photo-resists are-used less commonly in the manufacturing of high-density

integrated circuits.

Fabrication the Nmos Transistor

The process starts with of silicon substrate (Fig. (a)), in which a relatively thick

dioxide layer, also called field oxide, is created on the surface (Fig. (b)). Then, the field oxide

is selectively etched to expose the silicon surface on which the MOS transistor will be created

(Fig. (c)). Following this step, the surface is covered with a thin, high-quality oxide layer,

which will eventually form the gate oxide of the n- mos transistor On top of the thin oxide

layer, a layer of polysilicon (polycrystalline silicon) is deposited (Fig. (e)). Polysilicon is used

both as gate electrode material for MOS transistors and also as an interconnect medium in

silicon integrated circuits. Undoped polysilicon has relatively high resistivity. The-resistivity

of polysilicon can be reduced, however, by doping it with impurity atoms.

After deposition, the polysilicon layer is patterned and etched to form the

interconnects and the MOS transistor gates (Fig. (f)). The thin gate oxide not covered by

polysilicon is also etched away, which exposes the bare silicon surface on which the source

and drainjunctions are to be formed (Fig. (g)). The entire silicon surface is then doped with a

high concentration of impurities, either through diffusion or ion implantation (in this case

with donor atoms to produce n-type doping). Figure (h) shows that the doping penetrates the

exposed areas on the silicon surface, ultimately creating two ntype regions (source and drain

junctions) in the p-type substrate. The impurity doping also penetrates the polysilicon on the

surface, reducing its resistivity. Note that the polysilicon gate, which is patterned before

doping, actually defines the precise location of the channel region and, hence, the location of

the source and the drain regions. Since this procedure allows very precise positioning of the

two regions relative to the gate, it is also called the self-aligned process.

30

31

Once the source and drain regions are completed, the entire surface is again covered

with an insulating layer of silicon dioxide (Fig. (i)). The insulating oxide layer is then

patterned in order to provide contact windows for the drain and source junctions (Fig. (j)).

The surface is covered with evaporated aluminum which will form the interconnects (Fig.

(k)). Finally, the metal layer is patterned and etched, completing the interconnection of the

MOS transistors on the surface (Fig. (1)). Usually, a second (and third) layer of metallic

interconnect can also be added on top of this structure by creating another insulating oxide

layer, cutting contact (via) holes, depositing, and patterning the metal. The major process

steps for the fabrication of an nMOS transistor on p-type silicon substrate are also illustrated

in Plate 1 and Plate 2.

32

33

Figure 2.4. Process flow for the fabrication of an n-type MOS transistor

The CMOS n-Well Process

Having examined the basic process steps for pattern transfer through lithography and

having gone through the fabrication procedure of a single n-type MOS transistor, we can now

return to the generalized fabrication sequence of n-well CMOS integrated circuits, as shown

in Fig. 1. In the following figures, some of the important process steps involved in the

fabrication of a CMOS inverter will be shown by a top view of the lithographic masks and a

cross-sectional view of the relevant areas. The n-well CMOS process starts with a moderately

doped (with impurity concentration typically less than 1015 cm-3) p-type silicon substrate.

Then, an initial oxide layer is grown on the entire surface. The first lithographic mask defines

the n-well region. Donor atoms, usually phosphorus, are implanted through this window in

the oxide.

Once the n-well is created, the active areas of the nMOS and pMOS transistors can be

defined. Figures 2.6 through 2.11 illustrate the significant milestones that occur during the

fabrication process of a CMOS inverter. The main process steps for the fabrication of a

CMOS inverter are also illustrated in Plate 3, Plate 4 and Plate 5.

34

35

Following the creation of the n-well region, a thick field oxide is grown in the areas

surrounding the transistor's active regions, and a thin gate oxide is grown on top of the active

regions

36

The polysilicon layer is deposited using chemical vapor deposition (CVD) and

patterned by dry (plasma) etching. The created polysilicon lines will function as the gate

electrodes of the nMOS and the pMOS transistors and their interconnects.

37

Using a set of two masks, the n+ and p+ regions are implanted into the substrate and

into the n-well, respectively.

38

An insulating silicon dioxide layer is deposited over the entire wafer using CVD.

Then, the contacts are defined and etched away to expose the silicon or polysilicon contact

windows. These contact windows are necessary to complete the circuit interconnections using

the metal layer,

39

Metal (aluminum) is deposited over the entire chip surface using metal evaporation,

and the metal lines are patterned through etching. Since the wafer surface is non-planar, the

quality and the integrity of the metal lines created in this step are very critical and are

ultimately essential for circuit reliability.

40

The composite layout and the resulting cross-sectional view of the chip, showing one

nMOS and one pMOS transistor (in the n-well), and the poly-silicon and metal

interconnections. The final step is to deposit the passivation layer (for protection) over the

chip, except over wire-bonding pad areas

41

3.2 Explain Design rules Layout

Layout Design Rules

The physical mask layout of any circuit to be manufactured using a particular process

must conform to a set of geometric constraints or rules, which are generally called layout

design rules. These rules usually specify the minimum allowable line widths for physical

objects on-chip such as metal and polysilicon interconnects or diffusion areas, minimum

feature dimensions, and minimum allowable separations between two such features.

The design rules are usually described in two ways:

(i) Micron rules, in which the layout constraints such as minimum feature sizes

and minimum allowable feature separations are stated in terms of absolute dimensions in

micrometers, or,

(ii) Lambda rules, which specify the layout constraints in terms of a single

parameter () and thus allow linear, proportional scaling of all geometrical constraints.

Lambda-based layout design rules were originally devised to simplify the industry

standard micron-based design rules and to allow scaling capability for various processes. It

must be emphasized,

Active area rules

 Minimum active area width 3λ

 Minimum active area spacing 3 λ

Polysilicon rules

 Minimum poly width 2 λ

Minimum poly spacing 2 λ

 Minimum gate extension of poly over active 2 λ

 Minimum poly-active edge spacing L λ

(poly outside active area)

 Minimum poly-active edge spacing 3 λ

(poly inside active area)

Metal rules

 Minimum metal width 3 λ

 Minimum metal spacing 3 λ

Contact rules

 Poly contact size 2 λ

 Minimum poly contact spacing 2 λ

42

STICK DIAGRAM

It is the Stick and colour representation of the n- mos and c-mos circuit presentation

and constructed as per the given rules

 We have follow the rules as per the NAND and NOR gate constructions that is

series connection in n- mos for NAND and parallel connection in p-mos similarly parallel

connection for NOR gate in n-mos and series in p-mos

FIG. CIRCUIT DIAGRAM OF NOR GATE

Example- NOR GATE

FIG. STICK DIAGRAM OF NOR GATE.

Similarly every other gate can constructed following these conditions .

43

Full-Custom Mask Layout Design

 In this section, the basic mask layout principles for CMOS inverters and logic gates

will be presented. The design of physical layout is very tightly linked to overall circuit

performance (area, speed, and power dissipation) since the physical structure directly

determines the trans-conductance of the transistors, the parasitic capacitances and resistances,

and obviously, the silicon area which is used for a certain function. On the other hand, the

detailed mask layout of logic gates requires a very intensive and time consuming design

effort, which is justifiable only in special circumstances where the area and/or the

performance of the circuit must be optimized under very tight constraints. Therefore,

automated layout generation (e.g., using a standard cell library, computer aided placement-

and-routing) is typically preferred for the design of most digital VLSI circuits. In order to

judge the physical constraints and limitations, however, the VLSI designer must also have a

good understanding of the physical mask layout process.

44

Chapter 4 MOS Transistor

4.1. The Metal Oxide Semiconductor (MOS) Structure

We will start our investigation by considering the electrical behavior of the simple

two-. terminal MOS structure shown in Fig. 3.1. Note that the structure consists of three

layers: The metal gate electrode, the insulating oxide (SiO2) layer, and the p-type bulk

semiconductor (Si), called the substrate. As such, the MOS structure forms a capacitor, with

the gate and the substrate acting as the two terminals (plates) and the oxide layer as the

dielectric. The thickness of the silicon dioxide layer is usually between 10 nm and 50 nm.

The carrier concentration and its local distribution within the semiconductor substrate can

now be manipulated by the external voltages applied to the gate and substrate terminals. A

basic understanding of the bias conditions for establishing different carrier concentrations in

the substrate will also provide valuable insight into the operating conditions of more

complicated MOSFET structures.

Consider first the basic electrical properties of the semiconductor (Si) substrate, which

acts as one of/the electrodes of the MOS capacitor. The equilibrium concentrations of mobile

carriers in a semiconductor always obey the Mass Action Law given by

Here, n and p denote the mobile carrier concentrations of electrons and holes,

respectively, and ni denotes the intrinsic carrier concentration of silicon, which is a function

45

of the temperature T. At room temperature, i.e., T= 300 K, ni is approximately equal to 1.45

x 1010 cm-3. Assuming that the substrate is uniformly doped with an acceptor (e.g., Boron)

concentration NA, the equilibrium electron and hole concentrations in the p-type substrate are

approximated by

The doping concentrationNA is typically on the order of 1015 to 1016 cm-3; thus, it is

much

greater than the intrinsic carrier concentration ni

The MOS System under External Bias

We now turn our attention to the electrical behavior of the MOS structure under

externally applied bias voltages. Assume that the substrate voltage is set at VB = 0, and let

the gate voltage be the controlling parameter. Depending on the polarity and the magnitude of

VG, three different operating regions can be observed for the MOS system: accumulation,

depletion, and inversion. If a negative voltage VG is applied to the gate electrode, the holes in

the p-type substrate are attracted to the semiconductor-oxide interface. The majority carrier

concentration near the surface becomes larger than the equilibrium hole concentration in the

substrate; hence, this condition is called carrier accumulation on the surface (Fig. 3.5). Note

that in this case, the oxide electric field is directed towards the gate electrode. The negative

surface potential also causes the energy bands to bend upward near the surface.

Figure 3.5. The cross-sectional view and the energy band diagram of the MOS structure

46

While the hole density near the surface increases as a result of the applied negative

gate bias, the electron (minority carrier) concentration decreases as the negatively charged

electrons are pushed deeper into the substrate operating in accumulation region.

47

Now consider the next case in which a small positive gate bias VG is applied to the

gate electrode. Since the substrate bias is zero, the oxide electric field will be directed

towards the substrate in this case. The positive surface potential causes the energy bands to

bend downward near the surface, as shown in Fig. 3.6. The majority carriers, i.e., the holes in

the substrate, will be repelled back into the substrate as a result of the positive gate bias, and

these holes will leave negatively charged fixed acceptor ions behind. Thus, a depletion region

is created near the surface. Note that under this bias condition, the region near the

semiconductor-oxide interface is nearly devoid of all mobile carriers.

To complete our qualitative overview of different bias conditions and their effects

upon the MOS system, consider next a further increase in the positive gate bias. As a result of

the increasing surface potential, the downward bending of the energy bands will increase as

well. Eventually, the mid-gap energy level Ei becomes smaller than the Fermi level EFP on

the surface, which means that the substrate semiconductor in this region becomes n-type.

Within this thin layer, the electron density is larger than the majority hole density, since the

positive gate potential attracts additional minority carriers (electrons) from the bulk substrate

to the surface (Fig. 3.7).

48

The n-type region created near the surface by the positive gate bias is called the

inversion layer, and this condition is called surface inversion. It will be seen that the thin

inversion layer on the surface with a large mobile electron concentration can be utilized for

conducting current between two terminals of the MOS transistor. The creation of a

conducting surface inversion layer through externally applied gate bias is an essential

phenomenon for current conduction in MOS transistors. In the following we will examine the

structure and the operation of the MOS Field Effect Transistor (MOSFET).

 4.2 MOSFET Current-Voltage Characteristics

The analytical derivation of the MOSFET current-voltage relationships for various

bias conditions requires that several approximations be made to simplify the problem.

 Without these simplifying assumptions, analysis of the actual three-dimensional

MOS system would become a very complex task and would prevent the derivation of closed

form current-voltage equations. In the' following, we will use the gradual channel

approximation (GCA) for establishing the MOSFET current-voltage relationships, which will

effectively reduce the analysis to a one-dimensional current-flow problem. This will allow us

to devise relatively simple current equations that agree well with experimental results. As in

every approximate approach, however, the GCA also has its limitations, especially for small-

geometry MOSFETs. We will investigate the most significant limitations and examine some

of the possible remedies.

Now consider the incremental resistance dR of the differential channel segment

shown in Fig. 3.16. Assuming that all mobile electrons in the inversion layer have a constant

49

surface mobility jun, the incremental resistance can be expressed as follows. Note that the

minus sign is due to the negative polarity of the inversion layer charge Ql.

........(1)

The electron surface mobility yun used , depends on the doping concentration of the

channel region, and its magnitude is typically about one-half of that of the bulk electron

mobility. We will assume that the channel current density is uniform across this segment.

According to our one-dimensional model, the channel (drain) current ID flows between the

source and the drain regions in the y-coordinate direction. Applying Ohm's law for this

segment yields the voltage drop along the incremental segment dy, in the ydirection.

(2)

This equation can now be integrated along the channel, i.e., from y = 0 to y = L, using

the

boundary conditions given in above equation

...........(3)

The left-hand side of this equation is simply equal to L ID. The integral on the right-

hand side is evaluated by replacing Ql in

 Ql (y)=-Cox[VGS v VC(Y)- VTO]

..........(4)

Equation (3.32) represents the drain current ID as a simple second-order function of

the

 two external voltages, VGS and VDS. This current equation can also be rewritten as

.............(5)

50

where the parameters k and k' are defined as

...........(6)

The drain current equation given in (5) is the simplest analytical approximation for

the MOSFET current-voltage relationship. Note that, in addition to the process dependent

constants k' and V, the current-voltage relationship is also affected by the device dimensions,

W and L. In fact, we will see that the ratio of WIL is one of the most important design

parameters in MOS digital circuit design. Now, we must determine the region of validity for

this equation and what this means for the practical use of the equation.

The drain current-drain voltage curves shown above reach their peak value for VDS =

VGS - VTO Beyond this maximum, each curve exhibits a negative differential conductance,

which is not observed in actual MOSFET current-voltage measurements (section shown by

the dashed lines). We must remember now that the drain current equation (4) has been

derived under the following voltage assumptions,

..........................(7)

51

Also, drain current measurements with constant VS show that the current ID does not

show much variation as a function of the drain voltage. VDS beyond the saturation boundary,

but rather remains approximately constant around the peak value reached for VDS = VDSAT

This saturation drain current level can be found simply by substituting (7) for VDS in (1).

.............(8)

Thus, the drain current ID becomes a function only of the gate-to-source voltage

VGS, beyond the saturation boundary. Note that this constant saturation current

approximation is not very accurate in reality, and that the saturation-region drain current

continues to have a certain dependence on the drain voltage. For simple hand calculations,

however,(8) provides a sufficiently accurate approximation of the MOSFET drain (channel)

current in saturation.

4.3 MOSFET scaling and small geometry effects.

MOSFET Scaling and Small-Geometry Effects The design of high-density chips in

MOS VLSI (Very Large Scale Integration) technology requires that the packing density of

MOSFETs used in the circuits is as high as possible and, consequently, that the sizes of the

transistors are as small as possible. The reduction of the size, i.e., the dimensions of

MOSFETs, is commonly referred to as scaling.

There are two basic types ofsize-reduction strategies:

 full scaling (also called constant-field scaling)

 constant voltage scaling.

Full Scaling (Constant-Field Scaling)

This scaling option attempts to preserve the magnitude of internal electric fields in the

MOSFET, while the dimensions are scaled down by a factor of S. To achieve this goal, all

potentials must be scaled down proportionally, by the same scaling factor. Note that this

potential scaling also affects the threshold voltage VTO Finally, the Poisson equation

describing the relationship between charge densities and electric fields dictates that the

charge densities must be increased by a factor of S in order to maintain the field conditions.

Table 1 lists the scaling factors for all significant dimensions, potentials, and doping densities

of the MOS transistor.

52

Table 1. Full scaling of MOSFET dimensions, potentials, and doping densities.

Constant-Voltage Scaling

While the full scaling strategy dictates that the power supply voltage and all terminal

voltages be scaled down proportionally with the device dimensions, the scaling of voltages

may not be very practical in many cases. In particular, the peripheral and interface circuitry

may require certain voltage levels for all input and output voltages, which in turn would

necessitate multiple power supply voltages and complicated level shifter arrangements. For

these reasons, constant-voltage scaling is usually preferred over full scaling.

Table 2. Effects of full scaling upon key device characteristics.

 Explain MOSFET capacitances.

The majority of the topics covered in this chapter has been related to the steady-state

behavior of the MOS transistor. The current-voltage characteristics investigated here can be

53

applied for investigating the DC response of MOS circuits under various operating

conditions.

the gate electrode overlaps both the source region and the drain region at the edges.

The two overlap capacitances that arise as a result of this structural arrangement are called

CGD (overlap) and CGS (overlap), respectively. Assuming that both the source and the drain

diffusion regions have the same width W, the overlap capacitances can be found as

 Note that both of these overlap capacitances do not depend on the bias

conditions, i.e., they are voltage-independent. Now consider the capacitances which result

from the interaction between the gate voltage and the channel charge. Since the channel

region is connected to the source, the drain, and the substrate, we can identify three

capacitances between the gate and these regions, i.e., Cgs, C d and C b respectively. Notice

that in reality, the gate-to-channel capacitance is distributed and voltage-dependent. Then, the

gate-to-source capacitance Cgs is actually the gate-to-channel capacitance seen between the

gate and the source terminals; the gate-to-drain capacitance C ad is actually the gate-to-

channel capacitance seen between the gate and the drain terminals. A simplified view of their

bias-dependence can be obtained by observing the conditions in the channel region during

cut-off, linear, and saturation modes.

In cut-off mode (Fig. (a)), the surface is not inverted. Consequently, there is no

conducting channel that links the surface to the source and to the drain. Therefore, the gate-

to-source and the gate-to-drain capacitances are both equal to zero: Cgs = Cgd= 0. The gate-

to-substrate capacitance can be approximated by

54

In linear-mode operation, the inverted channel extends across the MOSFET, between

the source and the drain (Fig. (b)). This conducting inversion layer on the surface effectively

shields the substrate from the gate electric field; thus, Cgb = 0. In this case, the distributed

gate-to-channel capacitance may be viewed as being shared equally between the source and

the drain, yielding

When the MOSFET is operating in saturation mode, the inversion layer on the surface

does not extend to the drain, but it is pinched off (Fig. (c)). The gate-to-drain cca pacitance

component is therefore equal to zero (Cgd = 0) . Since the source is still linked to the

conducting channel, its shielding effect also forces the gate-to-substrate capacitance to be

zero, Cgb = 0. Finally, the distributed gate-to-channel capacitance as seen between the gate

and the source can be approximated by

Figure .. Schematic representation of MOSFET oxide capacitances during (a) cut-off, (b)

linear, and (c) saturation modes.

Table for Approximate oxide capacitance values for three operating modes of the MOS

55

4.4 Modeling of MOS Transistors including Basic concept the SPICE level-1

models, the level-2 and level-3 model

The LEVEL 1 Model Equations

The LEVEL 1 model is the simplest current-voltage description of the MOSFET,

which is basically the GCA-based quadratic model originally proposed by Shichman and

Hodges. The equations used for the LEVEL 1 n-channel MOSFET model in SPICE are as

follows.

……….(1)

where the threshold voltage VT is calculated as

Note that the effective channel length Le used in these equations is found as follows:

The LEVEL 2 Model Equations

To obtain a more accurate model for the drain current, it is necessary to eliminate

some of the simplifying assumptions made in the original GCA analysis. Specifically, the

bulk depletion charge must be calculated by taking into account its dependence on the

channel voltage. Solving the drain current equation using the voltage-dependent bulk charge

term, the following current-voltage characteristics can be obtained:

the saturation voltage VDSAT can be calculated as

56

The saturation mode current is

The LEVEL 3 Model Equations

The LEVEL 3 model has been developed for simulation of short-channel MOS'

transistors; it can represent the characteristics of MOSFETs quite precisely for channel

lengths down to 2 gum. The current-voltage equations are formulated in the same way as for

the LEVEL 2 model.

Where

The empirical parameter FB expresses the dependence of the bulk depletion charge on

the

three-dimensional geometry of the MOSFET. Here, the parameters VT, Fs, and us are

influenced by the short-channel effects, while the parameter Fn is influenced by the narrow-

channel effects. The dependence of the surface mobility on the gate electric field is simulated

as follows:

57

Chapter 5 MOS Inverter

 5.1 Basic NMOS inverters, characteristics,

 The logic symbol and the truth table of the ideal inverter are shown in Fig. 1. In

MOS inverter circuits, both the input variable A and the output variable B are represented by

node voltages, referenced to the ground potential. Using positive logic convention, the

Boolean (or logic) value of "1" can be represented by a high voltage of VDD, and the Boolean

(or logic) value of "0" can be represented by a low voltage of 0. The DC voltage transfer

characteristic (VTC) of the ideal inverter circuit is shown in Fig. 2. The voltage Vth is called

the inverter threshold voltage. Note that for any input voltage between 0 and Vth= VDD/2 , the

output voltage is equal to VDD (logic" 1).

 Fig.1,2 Logic symbol and truth table of the inverter

The output switches from VDD to 0 when the input is equal to Vth. For any input

voltage between Vth and VDD, the output voltage assumes a value of 0 (logic "0"). Thus, an

input voltage 0 < Vi. < V is interpreted by this ideal inverter as a logic "0," while an input

voltage Vth <Vin < VDD s interpreted as a logic " 1." The DC characteristics of actual inverter

circuits will obviously differ in various degrees from the ideal characteristic shown in Fig. 2.

The accurate estimation and the manipulation of the shape of VTC for various inverter types

are actually important parts of the design process.

Figure 3 shows the generalized circuit structure of an nMOS inverter. The input

voltage of the inverter circuit is also the gate-to-source voltage of the nMOS transistor (Vin =

VGs), while the output voltage of the circuit is equal to the drain-to-source voltage (Vout=

VDS). The source and the substrate terminals of the nMOS transistor, also called the driver

transistor, are connected to ground potential; hence,

58

the source-to-substrate voltage is VSB = 0. In this generalized representation, the load

device is represented as a two-terminal circuit element with terminal current IL and terminal

voltage VL(IL).

Fig 3 Voltage transfer characteristic (VTC) of the ideal inverter.

Voltage Transfer Characteristic (VTC)

Applying Kirchhoff s Current Law (KCL) to this simple circuit, we see that the load

current is always equal to the nMOS drain current.

…….(1)

The voltage transfer characteristic describing V as a function of Vin under DC

conditions can then be found by analytically solving equation (1) for various input voltage

values. The typical VTC of a realistic nMOS inverter is shown in Fig. Upon examination, we

can identify a number of important properties of this DC transfer characteristic.

The general shape of the VTC in Fig. 5.4 is qualitatively similar to that of the ideal

inverter transfer characteristic shown in Fig. 5.2. There are, however, several significant

differences that deserve special attention. For very low input voltage levels, the output

voltage V is equal to the high value of VOH (output high voltage). In this case, the driver

nMOS transistor is in cut-off, and hence, does not conduct any current. Consequently, the

voltage drop across the load device is very small in magnitude, and the output voltage level is

high. As the input voltage V increases, the driver transistor starts conducting a certain drain

current, and the output voltage eventually starts to decrease. Notice that this drop in the

59

output voltage level does not occur abruptly, such as the vertical drop assumed for the ideal

inverter VTC, but rather gradually and with a finite slope.

Figure 5.4. Typical voltage transfer characteristic (VTC) of a realistic nMOS inverter.

 We identify two critical voltage points on this curve, where the slope of the

Vt(Vin) characteristic becomes equal to -1, i.e.,

VOH: Maximum output voltage when the output level is logic " 1"

VOL Minimum output voltage when the output level is logic "0"

VIL: Maximum input voltage which can be interpreted as logic "0"

VIH: Minimum input voltage which can be interpreted as logic " 1"

 5.2 Describe inverters with resistive load and with n-type & MOSFET load

Resistive-Load Inverter

The basic structure of the resistive-load inverter circuit is shown in Fig. 1. As in the

general inverter circuit as shown in Fig. 2, an enhancement-type nMOS transistor acts as the

driver device. The load consists of a simple linear resistor, RL. The power supply voltage of

this circuit is VDD. Since the following analysis concentrates on the static behavior of the

circuit, the output load capacitance is not shown in this figure.

60

Fig .1 Fig .2

As already noted in Section equation 1, the drain current ID of the driver MOSFET is

equal to the load current R in DC steady-state operation. To simplify the calculations, the

channel-length modulation effect will be neglected in the following, i.e., A = 0. Also, note

that the source andthe substrate terminals of the driver transistor are both connected to the

ground; hence, VSB = 0. Consequently, the threshold voltage of the driver transistor is

always equal to V.. We start our analysis by identifying the various operating regions of the

driver transistor under steady-state conditions. For input voltages smaller than the threshold

voltage V., the transistor is in cut-off, and does not conduct any drain current. Since the

voltage drop across the load resistor is equal to zero, the output voltage must be equal to the

power supply voltage, VDD. As the input voltage is increased beyond Vth., the driver

transistor starts conducting a nonzero drain current. Note that the driver MOSFET is initially

in saturation, since its drain-tosource voltage. (VDs = Vout) is larger than (Vin – VGS.). Thus,

Inverters with n-Type MOSFET Load

The simple resistive-load inverter circuit examined in the previous section is not a

suitable candidate for most digital VLSI system applications, primarily because of the large

area occupied by the load resistor. In this section, we will introduce inverter circuits, which

use an nMOS transistor as the active load device, instead of the linear load resistor.The main

advantage of using a MOSFET as the load device is that the silicon area occupied by the

61

transistor is usually smaller than that occupied by a comparable resistive load. Moreover,

inverter circuits with active loads can be designed to have better overall performance

compared to that of passive-load inverters. In a chronological view, the development of

inverters with an enhancement-type MOSFET load precedes other active-load inverter types,

since its fabrication process was perfected earlier

Enhancement-Load nMOS Inverter

The circuit configurations of two inverters with enhancement-type load devices are

shown in Fig. 3 and 4. Depending on the bias voltage applied to its gate terminal, the load

transistor can be operated either in the saturation region or in the linear region. Both types of

inverters have some distinct advantages and disadvantages from the circuit design point of

view.

Fig 3 and 4

Depletion-Load nMOS Inverter

Several of the disadvantages of the enhancement-type load inverter can be avoided by

using a depletion type nMOS transistor as the load device.-The fabrication process for

producing an inverter with an enhancement-type nMOS driver and a depletion-type nMOS

load is slightly more complicated and requires additional processing steps, especially for the

channel implant to adjust the threshold voltage of the load device.

62

Fig 5 and 6

5.3 CMOS inverter and characteristics and interconnect effects: Delay time definitions

C – mos which consists of an enhancement-type nMOS transistor and an

enhancement-type pMOS transistor, operating in complementary mode (Fig.7 and 8). This

configuration is called Complementary MOS (CMOS). The circuit topology is

complementary push-pull in the sense that for high input, the nMOS transistor drives (pulls

down) the output node while the pMOS transistor acts as the load, and for low input the

pMOS transistor drives (pulls up) the output node while the nMOS transistor acts as the load.

Consequently, both devices contribute equally to the circuit operation characteristics

Fig.7 and 8

63

(7) CMOS inverter circuit. (8) Simplified view of the CMOS inverter, consisting of

two complementary nonideal switches.

 Fig -9 Operating regions of the nMOS and the pMOS transistors.

Both of these conditions for device saturation are illustrated graphically as shaded

areas on the Vu -V plane in Fig. 9 A typical CMOS inverter voltage transfer characteristic is

also superimposed for easy reference. Here, we identify five distinct regions, labeled A

through E, each corresponding to a different set of operating conditions. The table below lists

these regions and the corresponding critical input and output voltage levels.

64

Consider the cascade connection of two CMOS inverter circuits shown in Fig. 6.1.

The parasitic capacitances associated with each MOSFET are illustrated individually. Here,

the capacitances Cgd and Cgs are primarily due to gate overlap with diffusion, while Cdb and

Csb are voltage-dependent junction capacitances, as discussed in Chapter 3. The 'capacitance

component Cg is due to the thin-oxide capacitance over the gate area. In addition, we also

consider the lumped interconnect capacitance Cint, which represents the parasitic capacitance

contribution of the metal or polysilicon connection between the two inverters. It is assumed

that a pulse waveform is applied to the input of the first-stage inverter.

The problem of analyzing the output voltage waveform is fairly complicated, even for

this relatively simple circuit, because a number of nonlinear, voltage-dependent capacitances

are involved. To simplify the problem, we first combine the capacitances seen in Fig. into an

equivalent lumped linear capacitance, connected between the output node of the inverter and

the ground. This combined capacitance at the output node will be called the load capacitance,

Cload

 Fig - 10

The propagation delay times τPHL and τPLH determine the input-to-output signal delay

during the high to-low and low-to-high transitions of the output, respectively. By definition,

τPHL is the time delay between the V50%-transition of the rising input voltage and the V50 -

Cascaded CMOS inverter stages.

65

transition of the falling output voltage. Similarly, τPLH is defined as the time delay between

the V50 -transition of the falling input voltage and the V50%-transition of the rising output

voltage.

Thus, the propagation delay times τPHL and τPLH are found from Fig. 11 as

The average propagation delay τP of the inverter characterizes the average time

required for the input signal to propagate through the inverter.

FIG 11(Input and output voltage waveforms of a typical inverter, and the definitions

of propagation delay times. The input voltage waveform is idealized as a step pulse for

simplicity.)

 5.4 Invertor design with delay constraints.

 The propagation delay equations on chart 4-5 can be rearranged to solve for

W/L, as shown below, where we substituted Coxn(Wn/Ln) for kn and similarly for kp These

66

equations can then be used to ―size‖ a CMOS circuit to achieve a desired minimum rising or

falling propagation delay assuming Cload and other parameters are known

 After determining the desired W/L values, we can obtain the device widths W

based on the technology minimum design device lengths L . Other constraints such as rise

time/fall time or rise/fall symmetry may also need to be considered in addition to rise and fall

delay.

 5.5 Estimation of parasitics switching power dissipation of CMOS inverters.

equals the instantaneous drain current of the pMOS transistor. When the input voltage

switches from low to high, the Pmos transistor in the circuit is turned off, and the nMOS

transistor starts conducting. During this phase, the output load capacitance CL is being

discharged through the nMOS transistor. Thus, the capacitor current equals the instantaneous

drain current of the nMOS transistor. When the input voltage switches from high to low, the

nMOS transistor in the circuit is turned off, and the pMOS transistor starts conducting.

During this phase, the output load capacitance CL ,ad is being charged up through the pMOS

transistor; therefore, the capacitor current

• For complementary CMOS circuits where no dc current flows, average

dynamic power is given by

67

 Pave = CL VDD
2
 f

 where CL represents the total load capacitance, VDD is the power supply, and

f is the frequency of the signal transition

– above formula applies to a simple CMOS inverter or to complex,

combinational CMOS logic

– applies only to dynamic (capacitive) power

– dc power and/or short-circuit power must be computed separately

Chapter 6

Combinational, Sequential & Dynamics logic circuits

68

6.1 MOS logic circuits & CMOS logic circuits. state style, complex logic circuits,

pass transistor logic.

In its most general form, a combinational logic circuit, or gate, performing a Boolean

function can be represented as a multiple-input single-output system, as depicted in Fig. 6.1.

All input variables are represented by node voltages, referenced to the ground potential.

Using positive logic convention, the Boolean (or logic) value of " 1 " can be represented by a

high voltage of VDD, and the Boolean (or logic) value of "0" can be represented by a low

voltage of 0. The output node is loaded with a capacitance CL, which represents the

combined parasitic device capacitances in the circuit and the interconnect capacitance

components seen by the output node. This output load capacitance certainly plays a very

significant role in the dynamic operation of the logic gate.

Fig. 6.1.

MOS Logic Circuits with Depletion nMOS Loads

Two-Input NOR Gate

The first circuit to be examined in this section is the two-input NOR gate. The circuit

diagram, the logic symbol, and the corresponding truth table of the gate are given in Fig. 6.2.

The Boolean OR operation is performed by the parallel connection of the two enhancement-

type nMOS driver transistors.

69

 Fig. 6.2.

Two-Input NAND Gate

Next, we will examine the two-input NAND (NAND2) gate. The circuit diagram, the

logic symbol, and the corresponding truth table of the gate are given in Fig. 6.3 The Boolean

AND operation is performed by the series connection of the two enhancement type nMOS

driver transistors. There is a conducting path between the output node and the ground only if

the input voltage VA and the input voltage VB are equal to logic-high, i.e., only if both of the

series-connected drivers are turned on. In this case, the output voltage will be low, which is

the complemented result of the AND operation. Otherwise, either one or both of the driver

transistors will be off, and the output voltage will be pulled to a logic-high level by the

depletion-type nMOS load transistor.

70

Fig. 6.3

CMOS Logic Circuits

CMOS NOR2 (Two-Input NOR) Gate

The design and analysis of CMOS combinational logic circuits can be based on the

basic principles developed for the nMOS depletion-load logic circuits in the previous section.

Figure 6.4 shows the circuit diagram of a two-input CMOS NOR gate. Note that the circuit

consists of a parallel-connected n-not and a series-connected complementary p not. The input

voltages VA and VB are applied to the gates of one nMOS and one Pmos transistor

Figure 6.4

Complex Logic Circuits

To realize arbitrary Boolean functions of multiple input variables, the basic circuit

structures and design principles developed for simple NOR and NAND gates in the

71

previous sections can easily be extended to complex logic gates. The ability to realize

complex logic functions using a small number of transistors is one of the most attractive

features of nMOS and CMOS logic circuits.

Consider the following Boolean function as an example.

The nMOS depletion-load complex logic gate that is used to realize this function is

shown in Fig. 6.5 Inspection of the circuit topology reveals the simple design principle of the

pull-down network:

* OR operations are performed by parallel-connected drivers.

* AND operations are performed by series-connected drivers.

* Inversion is provided by the nature of MOS circuit operation.

Fig. 6.5 (nMOS complex logic gate realizing the Boolean function)

The CMOS transmission gate (TG) or pass gate, a new class of logic circuits which

use the TGs as their basic building blocks. As shown in Fig 6.6 the CMOS transmission gate

consists of one VnMOS and one pMOS transistor, connected in parallel. The gate voltages

applied to these two transistors are also set to be complementary signals. As such, the CMOS

TG operates as a bidirectional switch between the nodes A and B which is controlled by

signal C.

If the control signal C is logic-high, i.e., equal to VDD, then both transistors are

turned on and provide a low-resistance current path between the nodes A and B. If, on the

other hand, the control signal C is low, then both transistors will be off, and the path between

the nodes A and B will be an open circuit. This condition is also called the high-impedance

72

state. Note that the substrate terminal of the nMOS transistor is connected to ground and the

substrate terminal of the pMOS transistor is connected to VDD. Thus, we must take into

account the substrate-bias effect for both transistors, depending on the bias conditions. Figure

7.33 also shows three other commonly used symbolic representations of the CMOS

transmission gate.

Fig 6.6 Four different representations of the CMOS transmission gate (TG).

 6.2 Explain SR latch, clocked latch & flip-flop circuits.

The SR Latch Circuit

The bistable element consisting of two cross-coupled inverters (Fig. 8.2) has two

stable operating modes, or states. The circuit preserves its state (either one of the two possible

modes) as long as the power supply voltage is provided; hence, the circuit can perform a

simple memory function of holding its state. However, the simple two-inverter circuit

examined above has no provision for allowing its state to be changed externally from one

stable operating mode to the other. To allow such a change of state, we must add simple

switches to the bistable element, which can be used to force or trigger the circuit from one

operating point to the other. Figure 6.7 shows the circuit structure of the simple CMOS SR

latch, which has two such triggering inputs, S (set) and R (reset). In the literature, the SR

latch is also called an SR flip-flop, since two stable states can be switched back and forth.

The circuit consists of two CMOS NOR2 gates. One of the input terminals of each NOR gate

is used to cross-couple to the output of the other NOR gate, while the second input enables

triggering of the circuit.

73

 Fig 6.7

Fig 6.8 (Gate-level schematic and block diagram of the NOR-based SR latch.)

The truth table of the NOR-based SR latch is summarized in the following table :

Clocked SR Latch

All of the SR latch circuits examined in the previous section are essentially

asynchronous sequential circuits, which will respond to the changes occurring in input signals

at a circuit-delay-dependent time point during their operation. To facilitate synchronous

operation, the circuit response can be controlled simply by adding a gating clock signal to the

circuit, so that the outputs will respond to the input levels only during the active period of a

clock pulse. For simple reference, the clock pulse will be assumed to be a periodic square

waveform, which is applied simultaneously to all clocked logic gates in the system.

74

6.9 (Gate-level schematic of the clocked NOR-based SR latch).

Fig 6.10(AOI-based implementation of the clocked NOR-based SR latch circuit.)

 6.3 Explain Dynamic logic & basic principles.

In high-density, high-performance digital implementations where reduction of circuit

delay and silicon area is a major objective, dynamic logic circuits offer several significant

advantages over static logic circuits. The operation of all dynamic logic gates depends on

temporary (transient) storage of charge in parasitic node capacitances, instead of relying on

steady-state circuit behavior. This operational property necessitates periodic updating of

internal node voltage levels, since stored charge in a capacitor cannot be retained indefinitely.

Fig 6.11(Dynamic latch circuit.)

75

* When the clock is high (CK = 1), the pass transistor turns on. The capacitor C, is

either charged up, or charged down through the pass transistor MP, depending on the input

(D) voltage level. The output (Q) assumes the same logic level as the input.

* When the clock is low (CK = 0), the pass transistor MP turns off, and the capacitor

C is isolated from the input D. Since there is no current path from the intermediate node X to

either VDD or ground, the amount of charge stored in C. during the previous cycle

determines the output voltage level Q.

 6.4 High performance dynamics CMOS circuits.

The circuits presented here are variants of the basic dynamic CMOS logic gate

structure.

They are designed to take full advantage of the obvious benefits of dynamic operation

and at the same time, to allow unrestricted cascading of multiple stages. The ultimate goal is

to achieve reliable, high-speed, compact circuits using the least complicated clocking scheme

possible.

Domino CMOS Logic

Consider the generalized circuit diagram of a domino CMOS logic gate shown in Fig.

9.28. A dynamic CMOS logic stage, such as the one shown in Fig. 9.26, is cascaded with a

static CMOS inverter stage. The addition of the inverter allows us to operate a number of

such structures in cascade, as explained in the following.

Figure 6.12. Generalized circuit diagram of a domino CMOS logic gate.

76

During the precharge phase (when CK = 0), the output node of the dynamic CMOS

stage is precharged to a high logic level, and the output of the CMOS inverter (buffer)

becomes low. When the clock signal rises at the beginning of the evaluation phase, there are

two possibilities: The output node of the dynamic CMOS stage is either discharged to a low

level through the nMOS circuitry (1 to 0 transition), or it remains high.

Consequently, the inverter output voltage can also make at most one transition during

the evaluation phase, from 0 to 1. Regardless of the input voltages applied to the dynamic

CMOS stage, it is not possible for the buffer output to make a 1 to 0 transition during the

evaluation phase.

6.5 Define Dynamic Ram, SRAM, flash memory.

Read-write (R/W) memory circuits, on the other hand, must permit the modification

(writing) of data bits stored in the memory array, as well as their retrieval (reading) on

demand. This requires that the data storage function be volatile, i.e., the stored data are lost

when the power supply voltage is turned off. The read-write memory circuit is commonly

called Random Access Memory (RAM), mostly due to historical reasons.

Compared to sequential-access memories such as magnetic tapes, any cell in the R/W

memory array can be accessed with nearly equal access time. Based on the operation type

of individual data storage cells, RAMs are classified into two main categories: Static SRAMs

SRAM) and Dynamic RAMs (DRAM).

77

Chapter 7 System Design method & Testing

7.1 Design capture tools, hardware definition languages such as VHDL and packages.

Xlinx (introduction)

 Hardware description language (HDL): allows designer to specify logic function only.

Then a computer-aided design (CAD) tool produces or synthesizes the optimized gates. Most

commercial designs built using HDLs Two leading HDLs:

– Verilog

• developed in 1984 by Gateway Design Automation

• became an IEEE standard (1364) in 1995

– VHDL

VHDL was originally developed at the behest of the U.S Department of Defense in order to

document the behavior of the ASICs that supplier companies were including in equipment.

The idea of being able to simulate the ASICs from the information in this documentation was

so obviously attractive that logic simulators were developed that could read the VHDL files.

The next step was the development of logic synthesis tools that read the VHDL, and output a

definition of the physical implementation of the circuit.

The initial version of VHDL, designed to IEEE standard 1076-1987, included a wide range of

data types, including numerical (integer and real), logical (bit and boolean), character and

time, plus arrays of bit called bit_vector and of character called string

Standardization

The IEEE Standard 1076 defines the VHSIC Hardware Description Language or VHDL. It

was originally developed under contract F33615-83-C-1003 from the United States Air Force

awarded in 1983 to a team with Intermetrics, Inc. as language experts and prime contractor,

with Texas Instruments as chip design experts and IBM as computer system design experts.

The language has undergone numerous revisions and has a variety of sub-standards

associated with it that augment or extend it in important ways.

http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Logic_simulation
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/IEEE_1076
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Real_data_type
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Boolean_datatype
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/VHSIC
http://en.wikipedia.org/wiki/Hardware_Description_Language
http://en.wikipedia.org/wiki/United_States_Air_Force
http://en.wikipedia.org/wiki/Texas_Instruments
http://en.wikipedia.org/wiki/IBM

78

Design

VHDL is commonly used to write text models that describe a logic circuit. Such a

model is processed by a synthesis program, only if it is part of the logic design. A simulation

program is used to test the logic design using simulation models to represent the logic circuits

that interface to the design. This collection of simulation models is commonly called a

testbench.

VHDL has constructs to handle the parallelism inherent in hardware designs, but

these constructs (processes) differ in syntax from the parallel constructs in Ada (tasks). Like

Ada, VHDL is strongly typed and is not case sensitive. In order to directly represent

operations which are common in hardware, there are many features of VHDL which are not

found in Ada, such as an extended set of Boolean operators including nand and nor. VHDL

also allows arrays to be indexed in either ascending or descending direction; both

conventions are used in hardware, whereas in Ada and most programming languages only

ascending indexing is available.

Advantages

The key advantage of VHDL, when used for systems design, is that it allows the

behavior of the required system to be described (modeled) and verified (simulated) before

synthesis tools translate the design into real hardware (gates and wires).

Another benefit is that VHDL allows the description of a concurrent system. VHDL is

a dataflow language, unlike procedural computing languages such as BASIC, C, and

assembly code, which all run sequentially, one instruction at a time.

A VHDL project is multipurpose. Being created once, a calculation block can be used

in many other projects. However, many formational and functional block parameters can be

tuned (capacity parameters, memory size, element base, block composition and

interconnection structure).

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Strongly_typed
http://en.wikipedia.org/wiki/Case_sensitivity
http://en.wikipedia.org/wiki/Concurrent_system
http://en.wikipedia.org/wiki/Dataflow_programming

79

Xilinx

Xilinx ISE[1] (Integrated Software Environment) is a software tool produced by

Xilinx for synthesis and analysis of HDL designs, enabling the developer to synthesize

("compile") their designs, perform timing analysis, examine RTL diagrams, simulate a

design's reaction to different stimuli, and configure the target device with the programmer.

Technology

The Spartan-3 platform was the industry’s first 90nm FPGA, delivering more

functionality and bandwidth per dollar than was previously possible, setting new standards in

the programmable logic industry.

Xilinx designs, develops and markets programmable logic products, including

integrated circuits (ICs), software design tools, predefined system functions delivered as

intellectual property (IP) cores, design services, customer training, field engineering and

technical support. Xilinx sells both FPGAs and CPLDs for electronic equipment

manufacturers in end markets such as communications, industrial, consumer, automotive and

data processing.

Xilinx's FPGAs have been used for the ALICE (A Large Ion Collider Experiment) at

the CERN European laboratory on the French-Swiss border to map and disentangle the

trajectories of thousands of subatomic particles. Xilinx has also engaged in a partnership with

the United States Air Force Research Laboratory’s Space Vehicles Directorate to develop

FPGAs to withstand the damaging effects of radiation in space, which are 1,000 times less

sensitive to space radiation than the commercial equivalent, for deployment in new satellites.

http://en.wikipedia.org/wiki/Xilinx_ISE#cite_note-xilinx_com-xug-1
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Static_timing_analysis
http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Programmer_%28hardware%29
http://en.wikipedia.org/wiki/Industry
http://en.wikipedia.org/wiki/Consumer
http://en.wikipedia.org/wiki/Automotive
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/A_Large_Ion_Collider_Experiment
http://en.wikipedia.org/wiki/CERN
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Swiss
http://en.wikipedia.org/wiki/Subatomic_particles

80

The Virtex-II Pro, Virtex-4, Virtex-5, and Virtex-6 FPGA families, which include up

to two embedded IBM PowerPC cores, are targeted to the needs of system-on-chip (SoC)

designers.

Xilinx FPGAs can run a regular embedded OS (such as Linux or vxWorks) and can

implement processor peripherals in programmable logic.

Xilinx's IP cores include IP for simple functions (BCD encoders, counters, etc.), for

domain specific cores (digital signal processing, FFT and FIR cores) to complex systems

(multi-gigabit networking cores, the Micro Blaze soft microprocessor and the compact

Picoblaze microcontroller). Xilinx also creates custom cores for a fee.

The main design toolkit Xilinx provides engineers is the Vivado Design Suite, an

integrated design environment (IDE) with a system-to-IC level tools built on a shared

scalable data model and a common debug environment. Vivado includes electronic system

level (ESL) design tools for synthesizing and verifying C-based algorithmic IP; standards

based packaging of both algorithmic and RTL IP for reuse; standards based IP stitching and

systems integration of all types of system building blocks; and the verification of blocks and

systems. A free version WebPACK Edition of Vivado provides designers with a limited

version of the design environment.

Xilinx's Embedded Developer's Kit (EDK) supports the embedded PowerPC 405 and

440 cores (in Virtex-II Pro and some Virtex-4 and -5 chips) and the Microblaze core. Xilinx's

System Generator for DSP implements DSP designs on Xilinx FPGAs. A freeware version of

its EDA software called ISE WebPACK is used with some of its non-high-performance

chips. Xilinx is the only (as of 2007) FPGA vendor to distribute a native Linux freeware

synthesis tool chain

7.3 Introduction to IRSIM and GOSPL (open source packages).

IRSIM

IRSIM is a tool for simulating digital circuits. It is a "switch-level" simulator; that is,

it treats transistors as ideal switches. Extracted capacitance and lumped resistance values are

used to make the switch a little bit more realistic than the ideal, using the RC time constants

to predict the relative timing of events.

http://en.wikipedia.org/wiki/System-on-chip
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/VxWorks
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Free_ideal_ring
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/Microblaze

81

IRSIM shares a history with magic, although it is an independent program. Magic was

designed to produce, and IRSIM to read, the ".sim" file format, which is largely unused

outside of these two programs. IRSIM was developed at Stanford, while Magic was

developed at Berkeley. Parts of Magic were developed especially for use with IRSIM,

allowing IRSIM to run a simulation in the "background" (i.e., a forked process

communicating through a pipe), while displaying information about the values of signals

directly on the VLSI layout.

For "quick" simulations of digital circuits, IRSIM is still quite useful for confirming

basic operation of digital circuit layouts. The addition of scheduling commands ("at",

"every", "when", and "whenever") put IRSIM into the same class as Verilog simulators. It is,

in my opinion, much easier to write complicated testbench simulations using Tcl and IRSIM.

I have used IRSIM to validate the digital parts of several production chips at MultiGiG,

including the simulation of analog behavior such as PLL locking.

IRSIM version 9.5 was a long-standing and stable version that corresponded to the

relatively stable Magic version 6.5. When magic was recast in a Tcl/Tk interpreter framework

(versions 7.2 and 7.3), IRSIM could no longer operate as a background process. However, it

was clear that if IRSIM could also be recast in the same Tcl/Tk interpreter framework, the

level of interaction between it and Magic would be greatly increased.

7.4 Design verification and testing, simulation at various levels including timing

verification, faults models.

Design verification

Design verification is the most important aspect of the product development process

illustrated in Figures , consuming as much as 80% of the total product development time. The

intent is to verify that the design meets the system requirements and specifications.

Approaches to design verification consist of (1) logic simulation/emulation and circuit

simulation, in which detailed functionality and timing of the design are checked by means of

simulation or emulation; (2) functional verification, in which functional models describing

the functionality of the design are developed to check against the behavioral specification of

the design without detailed timing simulation; and (3) formal verification, in which the

functionality is checked against a ―golden‖ model. Formal verification further includes

82

property checking (or model checking), in which the property of the design is checked

against some presumed ―properties‖ specified in the functional or behavioral model (e.g., a

finite-state machine should not enter a certain state), and equivalence checking, in which the

functionality is checked against a ―golden‖ model .

Simulation-based techniques are the most popular approach to verification, even though

these are time-consuming and may be incomplete in finding design errors. Logic simulation

is used throughout every stage of logic design automation, whereas circuit simulation is used

after physical design. The most commonly used logic simulation techniques are compiled-

code simulation and event-driven simulation .The former is most effective for cyclebased

two-valued simulation; the latter is capable of handling various gate and wire delay models.

Although versatile and low in cost, logic simulation is too slow for complex SOC designs or

hardware/software co-simulation applications. For more accurate timing information and

dynamic behavior analysis, devicelevel circuit simulation is used. However, limited by the

computation complexity, circuit simulation is, in general, only applied to critical paths, cell

library components, and memory analysis.

Emulation-based verification by use of FPGAs provides an attractive alternative to

simulation-based verification as the gap between logic simulation capacity and design

complexity continues growing. Before the introduction of FPGAs in the 1980s, ASICs were

often verified by construction of a breadboard by use of small-scale integration (SSI) and

medium-scale integration (MSI) devices on a wire-wrap board. This became impractical as

the complexity and scale of ASICs moved into the VLSI realm. As a result, FPGAs became

the primary hardware for emulation-based verification. Although these approaches are costly

and may not be easy to use, they improve verification time by two to three orders of

magnitude compared with software simulation.

Formal verification techniques are a relatively new paradigm for equivalence checking.

Instead of input stimuli, these techniques perform exhaustive proof through rigorous logical

reasoning. The primary approaches used for formal verification include binary decision

diagrams (BDDs) and Boolean satisfiability (SAT). These approaches, along with other

algorithms specific to EDA applications. The BDD approach successively applies Shannon

expansion on all variables of a combinational logic function until either the constant function

―0‖ or ―1‖is reached.

83

TEST AUTOMATION

Advances in manufacturing process technology have also led to very complex

designs. As a result, it has become a requirement that design-for-testability (DFT) features be

incorporated in the register-transfer level (RTL) or gatelevel design before physical design to

ensure the quality of the fabricated devices. In fact, the traditional VLSI development process

illustrated in Figure involves some form of testing at each stage, including design

verification. Once verified, the VLSI design then goes to fabrication and, at the same time,

test engineers develop a test procedure based on the design specification and fault models

associated with the implementation technology. Because the resulting product quality is in

general unsatisfactory, modern VLSI test development planning tends to start when the RTL

design is near completion. This test development plan defines what test requirements the

product must meet, often in terms of defect level and manufacturing yield, test cost, and

whether it is necessary to perform self-test and diagnosis.

Fault models

A defect is a manufacturing flaw or physical imperfection that may lead to a fault, a

fault can cause a circuit error, and a circuit error can result in a failure of the device or

system. Because of the diversity of defects, it is difficult to generate tests for real defects.

Fault models are necessary for generating and evaluating test patterns. Generally, a good fault

model should satisfy two criteria: (1) it should accurately reflect the behavior of defects and

(2) it should be computationally efficient in terms of time required for fault simulation and

test generation. Many fault models have been proposed but, unfortunately, no single fault

model accurately reflects the behavior of all possible defects that can occur. As a result, a

combination of different fault models is often used in the generation and evaluation of test

patterns. Some well-known and commonly used fault models for general sequential logic

include the following:

1. Gate-level stuck-at fault model: The stuck-at fault is a logical fault model that has been

used successfully for decades. A stuck-at fault transforms the correct value on the faulty

signal line to appear to be stuck-at a constant logic value, either logic 0 or 1, referred to as

stuck-at-0 (SA0) or stuck-at-1 (SA1), respectively. This model is commonly referred to as the

line stuck-at fault model where any line can be SA0 or SA1, and also referred to as the gate-

level stuck-at fault model where any input or output of any gate can be SA0 or SA1.

84

2. Transistor-level stuck fault model: At the switch level, a transistor can be stuck-off or

stuck-on, also referred to as stuck-open or stuckshort, respectively. The line stuck-at fault

model cannot accurately reflect the behavior of stuck-off and stuck-on transistor faults in

complementary metal oxide semiconductor (CMOS) logic circuits because of the multiple

transistors used to construct CMOS logic gates. A stuckopen transistor fault in a CMOS

combinational logic gate can cause the gate to behave like a level-sensitive latch. Thus, a

stuck-open fault in a CMOS combinational circuit requires a sequence of two vectors for 1.3

Test automation 19 detection instead of a single test vector for a stuck-at fault. Stuck-short

faults, on the other hand, can produce a conducting path between power(VDD) and ground

(VSS) and may be detected by monitoring the power supply current during steady state,

referred to as IDDQ. This technique of monitoring the steady state power supply current to

detect transistor stuck-short faults is called IDDQ testing.

3. Bridging fault models: Defects can also include opens and shorts in the wires that

interconnect the transistors that form the circuit. Opens tend to behave like line stuck-at

faults. However, a resistive open does not behave the same as a transistor or line stuck-at

fault, but instead affects the propagation delay of the signal path. A short between two wires

is commonly referred to as a bridging fault. The case of a wire being shorted to VDD or VSS

is equivalent to the line stuck-at fault model. However, when two signal wires are shorted

together, bridging fault models are needed; the three most commonly used bridging fault

models

7.5 Design strategies for testing chip level and system level test techniques.

CHIP-LEVEL TEST TECHNIQUES

In the past the design process was frequently divided between a designer who

designed the circuit and a test engineer who designed the test to apply to that circuit. The

advent of the ASIC, small design teams, the desire for reliable ICs and rapid times to market

have all forced the ―test problem‖ earlier in the design cycle. In fact, the designer who is only

thinking about what functionality has to be implemented and not about how to test the circuit

will quite likely cause product deadlines to be slipped and in extreme cases precuts to be

stillborn. In this section some practical methods of incorporating test requirements into a

design. This discussion is structured around the main types of circuit structure that will been

countered in a digital CMOS chip

85

Regular Logic Array

Partial serial scan or parallel scan is probably the best approach for structure such as

dat a paths. One approach that has been used in a Lisp microprocessor is shown in figure .

Here the input busses may be driven by a serially loaded register. These in turn may be

sourced onto a bus, and this bus may be loaded into a register that may be serially accessed.

All of the control signals to the data path are also made scannable

Memories

Memories may use the self-testing techniques mentioned in section

5.3.4.2.alternatively, the provision of multiplexers on data inputs and addresses and

convenient external access to data outputs enables the testing of embedded memories. It is a

mistake to have memories indirectly accessible (i.e., data is written by passing through logic,

data is observed after passing through logic, addresses cannot be conveniently sequenced).

Because memories have to be tested exhaustively, any overhead on writing and reading the

memories can substantially increase the test time and, probably more significantly, turn the

testing task into an effort inscrutability

86

SYSTEM-LEVEL TEST TECHNIQUES

Traditionally at the board level, ―bed-of-nails‖ testers have been used to test boards.

In this type of a tester, the board under test is lowered onto a set of test points that probe

points of interest on the board. These may be sensed and driven to test the complete board. At

the chassis level, software programs are frequently used to test a complete board set. For

instance, when a computer boots, it might run a memory test on the installed memory to

detect possible faults. The increasing complexity of boards and the movement to technologies

like Multichip Modules (MCMs) and surface-mount technologies resulted in system

designers agreeing on a unified scan-based methodology for testing chips at the board(and

system level). This is called Boundary Scan

Boundary Scan

Introduction

The IEEE 1149 Boundary Scan architecture is shown in figure. In essence it provides

a standardized serial scan path through the I/O pins of an IC. At the board level, ICs obeying

the standard may be connected in a variety of series and parallel combinations to enable

testing of a complete board or, possibly, collection of boards. The description here is a précis

of the published standard .The standard allows for the following types of tests to be run in a

unified testing framework

87

 Figure 5.25 TAP architecture

The Test Access Port (TAP)

The Test Access Port (TAP) is a definition of the interface that needs to be included in an IC

to make it capable of being included in a Boundary-Scan architecture. The port has four or

five single-bit connections, as follows

TCK (The Test Clock Input) – used to clock tests into and out of chips.

TMS (The Test Mode Select) –used to control test operations.

 TDI (The Test data Input) – used to input test data to a chip.

TDO (the Test Data Output) –used to output test data from a chip. It also has an optional

signal

 TRST (The Test Reset Signal) used to asynchronously reset the TAP controller, also used if

a power-up reset signal is not available in the chip being tested. The TDO signal is defined as

a tri-state signal that is only driven when the TAP controller is outputting test data

The TDO signal is defined as a tri-state signal that is only driven when the TAP controller is

outputting test data.

The Test Architecture

The basic test architecture that

must be implemented on a chip is

shown in figure5.25 it consists of:

TAP interface pins a set of test-

data registers to collect data from

the chip an instruction register to

enable test inputs to be applied to the

 chip a TAP controller, which interprets test instructions and controls the flow of data onto

and out of the TAP .Data that is input via the TDI port may be fed to one or more test data

registers or an instruction register. An output MUX selects between the instruction

register and the data registers to be output to the tri-state TDO pin.

