CONTENT GENERATION

[UNDER EDUSAT PROGRAMMIE]

MICROCONTROLLER,
EMBEDDED SYSTEM AND PLC

SUBJECT CODE-Theory 3

6'" SEM ETC, DIPLOMA ENGG.

UNDER SCTEVT ODISHA
PREPARED BY:

1. Er. PRIYANKA DAS

[Lecturer (PT), Dept. of ETC, UCP ENGG.SCHOOL, Berhampur]

2. Er. CHINMOY KUMAR PATNAIK

[Lecturer (PT), Dept. of ETC, UCP ENGG.SCHOOL, Berhampur |

INTRODUCTION TO EMBEDDED SYSTEM

EMBEDDED SYSTEM OVERVIEW:-

Computing systems are everywhere. There is no surprise that millions of computing
systems are built every year destined for desktop computers (Personal Computers, or
PC’s), workstations, mainframes and servers.

The billions of computing systems are built every year for a very different purpose: they
are embedded within larger electronic devices, repeatedly carrying out a particular
function, often going completely unrecognized by the device’s user.

An embedded system is nearly any computing system other than a desktop, laptop, or
mainframe computer.

Shortlist of embedded systems:-

Embedded systems are found in a variety of common electronic devices, such as:

1. consumer electronics -- cell phones, pagers, digital cameras, camcorders,
videocassette recorders, portable video games, calculators, and personal digital
assistants;
home appliances -- microwave ovens, answering machines, thermostat, home
security, washing machines, and lighting systems;
office automation -- fax machines, copiers, printers, and scanners;
business equipment -- cash registers, curbside check-in, alarm systems, card
readers, product scanners, and automated teller machines;
automobiles -- transmission control, cruise control, fuel injection, anti-lock
brakes, and active suspension.

Characteristics of embedded systems:-

e Embedded systems have several common characteristics:

1) Single-functioned: An embedded system usually executes only one program, repeatedly.

For example, a pager is always a pager. A desktop system executes a variety of programs,
like spreadsheets, word processors, and video games, with new programs added
frequently.

Tightly constrained: All computing systems have constraints on design metrics. A
design metric is a measure of an implementation’s features, such as cost, size,
performance, and power. Embedded systems often must cost just a few dollars, must be
sized to fit on a single chip, must perform fast enough to process data in real-time, and
must consume minimum power to extend battery life or prevent the necessity of a cooling
fan.

3) Reactive and real-time: Many embedded systems must continually react to changes in
the system’s environment, and must compute certain results in real time without delay.
For example, a car's cruise controller continually monitors and reacts to speed and brake
sensors. It must compute acceleration or decelerations amounts repeatedly within a
limited time; a delayed computation result could result in a failure to maintain control of
the car. A desktop system typically focuses on computations, with relatively infrequent
(from the computer’s perspective) reactions to input devices. In addition, a delay in those
computations, while perhaps inconvenient to the computer user, typically does not result
in a system failure.

A DIGITAL CAMERA:-

Consider the digital camera system as shown in the below figure .

The A2D and D2A circuits convert analog images to digital and digital to analog,

respectively.

The CCD preprocessor is a charge-coupled device preprocessor.

The JPEG codec compresses and decompresses an image using the JPEG2 compression

standard, enabling compact storage in the limited memory of the camera.

The Pixel coprocessor aids in rapidly displaying images.

The Memory controller controls access to a memory chip also found in the camera,

while the DMA controller enables direct memory access without requiring the use of the

microcontroller.

The UART enables communication with a PC’s serial port for uploading video frames,

while the ISA bus interface enables a faster connection with a PC’s ISA bus.

The LCD ctrl and Display ctrl circuits control the display of images on the camera’s

liquid-crystal display device.

A Multiplier/Accum circuit assists with certain digital signal processing.

The heart of the system is a microcontroller, which is a processor that controls the

activities of all the other circuits. Each device as a processor designed for a particular

task, while the microcontroller is a more general processor designed for general tasks.
This example illustrates some of the embedded system characteristics described above.

It performs a single function repeatedly. The system always acts as a digital camera,
wherein it captures, compresses and stores frames, decompresses and displays frames,
and uploads frames.

It is tightly constrained. The system must be low cost since consumers must be able to
afford such a camera. It must be small so that it fits within a standard-sized camera. It
must be fast so that it can process numerous images in milliseconds. It must consume
little power so that the camera’s battery will last a long time.

e This particular system does not possess a high degree of the characteristic of being
reactive and real-time, as it only needs to respond to the pressing of buttons by a user,
which even for an avid photographer is still quite slow with respect to processor speeds.

Digital camera

- A/D P CCD preprocessor Pixel coprocessor D/A

v v)
v v v

JPEG codec Microcontroller Multiplier/Accum

DMA controller Display ctrl

: e '

Memory controller ISA bus interface LCD ctil

An embedded system example -- a digital camera.

EMBEDDED SYSTEMS TECHNOLOGIES:-

e Technology as a manner of accomplishing a task, especially using technical processes,

methods, or knowledge.
e There are three technologies in the embedded system design:
1. Processor technologies
2. IC technologies
3. Design technologies

PROCESSOR TECHNOLOGY:-

General Purpose Processors --- Software:-
e The general-purpose processor builds a device suitable for a variety of applications, to

maximize the number of devices sold.

One feature of such a processor is a program memory — the designer does not know what
program will run on the processor, so the program cannot be build into the digital circuit.

Another feature is a general datapath — the datapath must be general enough to handle a
variety of computations, so typically has a large register file and one or more general-

purpose arithmetic-logic units (ALUs).
An embedded system simply uses a general-purpose processor, by programming the
processor’s memory to carry out the required functionality.

e Using a general-purpose processor in an embedded system may result in several design-
metric benefits.
1. Design time and NRE cost are low, because the designer must only write a
program, but need not do any digital design.
2. Flexibility is high, because changing functionality requires only changing the
program.
3. Unit cost may be relatively low in small quantities, since the processor
manufacturer sells large quantities to other customers.
4. Performance may be fast for computation-intensive applications, if using a fast
processor, due to advanced architecture features and leading edge IC technology.
e There are also some design-metric drawbacks.
a. Unit cost may be too high for large quantities.
b. Performance may be slow for certain applications.
¢. Size and power may be large due to unnecessary processor hardware.

Figure 1(b) illustrates that a general-purpose covers the desired functionality, but not necessarily
efficiently.

Figure 1 : Processors very in their customization for the problem at hand: (a) desired
functionality. (b) general-purpose processor. (b) application-specific processor. (c¢)
single-purpose processor.

total=0

fori=1toN loop
total += MJi]

end loop

(b) (c) (D)

Figure 2(a) shows a simple architecture of a general-purpose processor implementing the array
summing functionality. The functionality is stored in a program memory. The controller fetches
the current instruction, as indicated by the program counter (PC), into the instruction register
(IR). It then configures the datapath for this instruction and executes the instruction. Finally, it
determines the appropriate next instruction address, sets the PC to this address, and fetches
again.

Figure 2:
Implementing desired functionality on different processor types: (a) general-purpose. (b) application-specific.
(c) single-purpose.

Controller Datapath

Register

Control file Controller Datapath

Controller

logic
h T Control | Registers | | Control | Datapath
logic :
General lozlu: |111(lex| total |
- ALU PC Custom B
E ALU State register

| v | |

Program Data Program Data Data
memory memory memory memory memory

Assembly Assembly

code for: code for:
total = 0 total=0
fori=1to... fori=1to...

(a) (b)
Single Purpose Processors ---- Hardware:-

e A single-purpose processor is a digital circuit designed to execute exactly one program. For
example, consider the digital camera. All of the components other than the
microcontroller are single-purpose processors. The JPEG codec, for example, executes a
single program that compresses and decompresses video frames.

An embedded system creates a single-purpose processor by designing a custom digital

circuit.

Using a single-purpose processor in an embedded system results in several design metric

benefits and drawbacks, which are essentially the inverse of those for general purpose

processors.

Performance may be fast, size and power may be small, and unit-cost may be low for

large quantities, while design time and NRE costs may be high, flexibility is low, unit

cost may be high for small quantities, and performance may not match general-purpose

processors for some applications.
For example, Figure 1(d) illustrates the use of a single-purpose processor in our embedded
system example, representing an exact fit of the desired functionality. Figure 2(c) illustrates the
architecture of such a single-purpose processor for the example. Since the example counts from
one to N, we add an index register. The index register will be loaded with N, and will then count
down to zero, at which time it will assert a status line read by the controller. The example has
only one other value, we add only one register labeled total to the datapath. Since the example’s
only arithmetic operation is addition, we add a single adder to the datapath. Since the processor
only executes this one program, we hardware the program directly into the control logic.

APPLICATION ---- SPECIFIC PROCESSORS:-

An application-specific instruction-set processor (or ASIP) can serve as a compromise
between the other processor.

An ASIP is designed for a particular class of applications with common characteristics,
such as digital-signal processing, telecommunications, embedded control, etc.

An ASIP in an embedded system can provide the benefit of flexibility while still
achieving good performance, power and size.

Such processors can require large NRE cost to build the processor itself.

Microcontrollers:-

A microcontroller is a microprocessor that has been optimized for embedded control
applications.

Such applications typically monitor and set numerous single bit control signals but do not
perform large amount of data computations. Thus microcontrollers tend to have simple
datapaths that excel bit-level operations and reading and writing external bits.
Furthermore, they tend to incorporate on the microprocessor chip several peripheral
components common in control applications like serial communication peripherals,
times, counters, pulse width modulators and analog to digital converters. Such
incorporation of peripherals enables single chip implementations and hence smaller and
lower cost product.

Digital Signal Processing:-

Digital-signal processors (DSPs) are a common class of ASIP.

A DSP is a processor designed to perform common operations on digital signals, which
are the digital encodings of analog signals like video and audio. These operations carry
out common signal processing tasks like signal filtering, transformation, or combination.
Such operations are usually math-intensive, including operations like multiply and add or
shift and add.

To support such operations, a DSP may have special purpose datapath components such
a multiply-accumulate unit, which can perform a computation like T = T + M[i]*k using
only one instruction.

Figure 1(c) illustrates the use of an ASIP ; while partially customized to the desired
functionality, there is some inefficiency since the processor also contains features to
support reprogramming.

Figure 2(b) shows the general architecture of an ASIP. The datapath may be customized.
It may have an auto-incrementing register, a path that allows the add of a register plus a
memory location in one instruction, fewer registers, and a simpler controller.

IC TECHNOLOGY:-

Every processor must eventually be implemented on an IC.

An IC (Integrated Circuit), often called a “chip,” is a semiconductor device consisting of
a set of connected transistors and other devices.

A number of different processes exist to build semiconductors, the most popular of which
is CMOS (Complementary Metal Oxide Semiconductor).

Semiconductors consist of numerous layers as shown in the figure given below.

Figure :IC’s consist of several layers. Shown is a simplified CMOS transistor; an IC may
possess millions of these. connected by layers of metal (not shown).

IC package ol
drain

Silicon substrate

The bottom layers form the transistors. The middle layers form logic gates. The top layers
connect these gates with wires. These layers can be created by depositing photo-sensitive
chemicals on the chip surface and then shining light through masks to change regions of
the chemicals. A set of masks is often called a layout. The narrowest line that we can
create on a chip is called the feature size.

Full Custom / VLSI:-

In a full-custom IC technology, we optimize all layers for our particular embedded
system’s digital implementation.

Such optimization includes placing the transistors to minimize interconnection lengths,
sizing the transistors to optimize signal transmissions and routing wires among the
transistors.

Once all the masks are completed, then we send the mask specifications to a fabrication
plant that builds the actual ICs.

Full-custom IC design, often referred to as VLSI (Very Large Scale Integration) design,
has very high NRE cost and long turnaround times (typically months) before the IC
becomes available, but can yield excellent performance with small size and power.

It is usually used only in high-volume or extremely performance-critical applications.

Semicustom ASIC (Gate Array and Standard Cell):-

In an ASIC (Application-Specific IC) technology, the lower layers are fully or partially
built, leaving us to finish the upper layers.

In a gate array technology, the masks for the transistor and gate levels are already built
(i.e., the IC already consists of arrays of gates).

The remaining task is to connect these gates to achieve our particular implementation.

In a standard cell technology, logic-level cells (such as an AND gate or an AND-OR-
INVERT combination) have their mask portions pre-designed, usually by hand.

Thus, the remaining task is to arrange these portions into complete masks for the gate
level, and then to connect the cells.

ASICs are by far the most popular IC technology, as they provide for good performance
and size, with much less NRE cost than full-custom IC’s.

PLD:-

In a PLD (Programmable Logic Device) technology, layers implement a programmable
circuit, where programming has a lower-level meaning than a software program.

The programming that takes place may consist of creating or destroying connections
between wires that connect gates, either by blowing a fuse, or setting a bit in a
programmable switch.

Small devices, called programmers, connected to a desktop computer can typically
perform such programming.

PLD's of two types, simple and complex. One type of simple PLD is a PLA
(Programmable Logic Array), which consists of a programmable array of AND gates and
a programmable array of OR gates.

Another type is a PAL (Programmable Array Logic), which uses just one programmable
array to reduce the number of expensive programmable components.

One type of complex PLD, growing very rapidly in popularity over the past decade, is the
FPGA (Field Programmable Gate Array), which offers more general connectivity among
blocks of logic, rather than just arrays of logic as with PLAs and PALs, and are thus able
to implement far more complex designs. PLDs offer very low NRE cost and almost
instant IC availability.

They are typically bigger than ASICs, may have higher unit cost, may consume more
power, and may be slower (especially FPGAs). They still provide reasonable
performance, though, so are especially well suited to rapid prototyping.

8051 MICROCONTROLLER ARCHITECTURE

The architecture of the 8051 family of microcontrollers is referred to as the MCS-51 architecture
(Micro Controller Series-51), or sometimes simply as MCS-51.The microcontrollers have an 8-
bit data bus. They are capable of addressing 64K of program memory and a separate 64K of data
memory. The block diagram of 8051 microcontroller is shown below.

.l\..:‘
._d!‘l'—q"l

S:;l Eh::.
by

RAM

' 4K 128 Bytes
Oscillator Program

memory SFR

- External memo 4 o ports Serial
Interrupts comtral (G4K) inputioutput

The 8051 have 4K of code memory implemented as on-chip Read Only Memory (ROM). The
8051 have 128 bytes of internal Random Access Memory (RAM).

The 8051 has two timer/counters, a serial port, 4 general purpose parallel input/output ports, and
interrupt control logic with five sources of interrupts.

Besides internal RAM, the 8051 have various Special Function Registers (SFR), which are the
control and data registers for on-chip facilities.

The SFRs also include the accumulator, the B register, and the Program StatusWord (PSW),
which contains the CPU flags.

Programming the various internal hardware facilities of the 8051 is achieved by placing the
appropriate control words into the corresponding SFRs. The 8031 are similar to the 8051, except
it lacks the on-chip ROM.

P1.0[1] Vco

P1.1[=] PO.0/ADO
23] PO.1/ADA
3[4 PO.2/AD2
-a[s] PO.3/AD3
5[6] PO.4/AD4
e[7] PO.5/ADS5
7[&] PO.6/AD6
RsST [9] PO.7/AD7
RxD/P3.0[10 EA/VPPR
TxD/P3.1 |11 ALE/PROG
TNTO/P3.2[12] PSEN
NTi/P3.3[13] P2.7/A15
TOos/P3.a[14] P2.6/A14
Ti/P3.5[15 P2.5/A13
wrP3.s[16] P2 a/A12
mRo/P3.7[17 P2.3/A11
XTAL2 [18] P2.2/A10

XTAL1 |19 22| PZ2.1/A9

vas [20 21] P2.o/A8

1-8: Port 1: Each of these pins can be used as either input or output according to user needs.
Also, pins 1 and 2 (P1.0 and P1.1) have special functions associated with Timer 2.

9: Reset Signal: High logical state on this input halts the MCU and clears all the registers.
Bringing this pin back to logical state zero starts the program a new as if the power had just been

turned on. In another words, positive voltage impulse on this pin resets the MCU. Depending on
the device's purpose and environs, this pin is usually connected to the push-button, reset-upon-
start circuit or a brown out reset circuit.

10-17: Port 3:as with Port 1, each of these pins can be used as universal input or output.
However, each pin of Port 3 has an alternative function:

1. Pin 10: RXD - serial input for asynchronous communication or serial output for
synchronous communication.

2. Pin 11: TXD - serial output for asynchronous communication or clock output for
synchronous communication

Pin 12: INTO* - input for interrupt 0

Pin 13: INT1* - input for interrupt 1

Pin 14: TO - clock input of counter 0

Pin 15: T1 - clock input of counter 1

Pin 16: WR¥* - signal for writing to external (add-on) RAM memory.

8. Pin 17: RD* - signal for reading from external RAM memory

18-19: X2 and X1: Input and output of internal oscillator. Quartz crystal controlling the
frequency commonly connects to these pins. Capacitances within the oscillator mechanism
optimal voltage.

20: GND: Ground

21- 28: Port 2: if external memory is not present, pins of Port 2 act as universal input/output. If
external memory is present, this is the location of the higher address byte, i.e. addresses A8 —
A15. It is important to note that in cases when not all the 8 bits are used for addressing the
memory (i.e. memory is smaller than 64kB), the rest of the unused bits are not available as
input/output.

29: PSEN*: MCU activates this bit (brings to low state) upon each reading of byte instruction)
from program memory. If external ROM is used for storing the program, PSEN- is directly
connected to its control pins.

30: ALE: before each reading of the external memory, MCU sends the lower byte of the address
register (addresses A0 — A7) to port PO and activates the output ALE. External Chip (eg:
74HC373), memorizes the state of port PO upon receiving a signal from ALE pin, and uses it as
part of the address for memory chip. During the second part of the MCU cycle, signal on ALE is
off, and port PO is used as Data Bus. In this way, by adding only one integrated circuit, data from
port can be multiplexed and the port simultaneously used for transferring both addresses and
data.

31: EA*: Bringing this pin to the logical state zero designates the ports P2 and P3 for
transferring addresses regardless of the presence of the internal memory. This means that even if
there is a program loaded in the MCU it will not be executed, but the one from the external ROM

will be used instead. Conversely, bringing the pin to the high logical state causes the controller to

use both memories, first the internal, and then the external (if present).

32-39: Port 0: Similar to Port 2, pins of Port 0 can be used as universal input/output, if external
memory is not used. If external memory is used, PO behaves as address output (A0 — A7) when
ALE pin is at high logical level, or as data output (Data Bus) when ALE pin is at low logical
level.

40: VCC: Power +5V

MEMORY ORGANIZATION

During the runtime, microcontroller uses two different types of memory: one for holding the
program being executed (ROM memory), and the other for temporary storage of data and
auxiliary variables (RAM memory). Depending on the particular model from 8051 family,
this is usually few kilobytes of ROM and 128/256 bytes of RAM. This amount is built-in and
is sufficient for common tasks performed "independently" by the MCU. However, 8051 can
address up to 64KB of external memory.

MEMORY ARCHITECTURE

(i) VON-NEUMAN ARCHITECTURE
Von Neumann architectures are computer architectures that use the same storage device for

both instructions and data. By treating the instructions in the same way as the data, the
machine could easily change the instructions. In other words the machine was reprogram
able. Because the machine did not distinguish between instructions and data, it allowed a
program to modify or replicate a program.

Address Buas

Data Bus

(i)HARVARD ARCHITECTURE

The term Harvard architecture originally referred to computer architectures that uses
physically separate storage devices for their instructions and data. Harvard architecture has
separate data and instruction busses, allowing transfers to be performed simultaneously on
both buses.

- " -
[bain Bus Diaix Bu:

The Harvard architecture executes instructions in fewer instruction cycles than the Von
Neumann architecture. This is because a much greater amount of instruction parallelism is
possible in the Harvard architecture. Parallelism means that fetches for the next instruction can
take place during the execution of the current instruction, without having to either wait for a
"dead" cycle of the instruction's execution or stop the processor's operation while the next
instruction is being fetched.

MEMORY ORGANIZATION

The 8051 has two types of memory and these are Program Memory and Data Memory. Program
Memory (ROM) is used to permanently save the program being executed, while Data Memory
(RAM) is used for temporarily storing data and intermediate results created and used during the
operation of the microcontroller. Depending on the model in use (we are still talking about the
8051 microcontroller family in general) at most a few Kb of ROM and 128 or 256 bytes of RAM
is used. All 8051 microcontrollers have a 16-bit addressing bus and are capable of addressing 64
kb memory. It is neither a mistake nor a big ambition of engineers who were working on basic
core development. It is a matter of smart memory organization which makes these
microcontrollers a real “programmers’ goody*.

PROGRAM MEMORY/ROM MEMORY
8051 have built-in ROM, although there are substantial variations. With some models internal
memory cannot be programmed directly by the user. Instead, the user needs to precede the

program to the manufacturer, so that the MCU can be programmed appropriately in the

process of fabrication. Obviously, this option is cost-effective only for large series.
Fortunately, there are MCU models ideal for experimentation and small specialized series.
Many manufacturers deliver controllers that can be programmed directly by the user. These
come in an EPROM version or EEPROM version or OTP or FLASH type.

EA=1 Ao
FEFF FFFFy

FOM
Bournta=y

Address FFFF hex

EA pin=1 ‘
Additional ROM

‘ Memory
(64K max.)

Address FFFF hex

External ROM
Memory Address 4000 hex

1111¢

(64K max.) Address 3FFF hex

Embedded ROM
Memory

(4K) Microcontroller
ereees Address 0000 hex =wreee P S

EA=0 In this case, the microcontroller completely ignores internal program memory and executes
only the program stored in external memory.

EA=1 In this case, the microcontroller executes first the program from built-in ROM, then the
program stored in external memory.

In both cases, PO and P2 are not available for use since being used for data and address
transmission. Besides, the ALE and PSEN pins are also used.

RAM MEMORY/DATA MEMORY

Data Memory is used for temporarily storing data and intermediate results created and used

during the operation of the microcontroller. Besides, RAM memory built in the 8051 family
includes many registers such as hardware counters and timers, input/output ports, serial data
buffers etc.

The previous models had 256 RAM locations, while for the later models this number was
incremented by additional 128 registers.

However, the first 256 memory locations (addresses 0-FFh) are the heart of memory common to
all the models belonging to the 8051 family.

Locations available to the user occupy memory space with addresses 0-7Fh, i.e. first 128
registers. This part of RAM is divided in several blocks.

The first block consists of 4 banks each including 8 registers denoted by R0O-R7.
Prior to accessing any of these registers, it is necessary to select the bank containing it.

The next memory block (address 20h-2Fh) is bit- addressable, which means that each bit has its
own address (0-7Fh). Since there are 16 such registers, this block contains in total of 128 bits
with separate addresses (address of bit 0 of the 20h byte is 0, while address of bit 7 of the 2Fh
byte is 7Fh).

The third group of registers occupy addresses 2Fh-7Fh, i.e. 80 locations, and does not have any
special functions or features.

ADDITIONAL RAM

In order to satisfy the programmers’ constant hunger for Data Memory, the manufacturers
decided to embed an additional memory block of 128 locations into the latest versions of the
8051 microcontrollers. (However, it’s not as simple as it seems to be... The problem is that
electronics performing addressing has 1 byte (8 bits) on disposal and is capable of reaching only
the first 256 locations, therefore. In order to keep already existing 8-bit architecture and
compatibility with other existing models a small trick was done. It means that additional memory
block shares the same addresses with locations intended for the SFRs (80h- FFh).)

In order to differentiate between these two physically separated memory spaces, different ways
of addressing are used. The SFRs memory locations are accessed by direct addressing, while
additional RAM memory locations are accessed by indirect addressing.

Later versions of the 8051 microcontrollers:
(256 general-purpose registers)
A

Previous versions of the 8051 microcontrollers
(128 general-purpose registers)

J
80 I PO
81] &P

332228822 32320822 32313R22 32323323

Registers’ names — .

g

3
@

VI

k]
3

FF|FE FO|=C|FelFa|Fa|Fe

Felsirsralralsz|Fi]Fo

:
i

|EF|EEEDEC]EE{EA [ES|E3

=/

E7|EE £5|E4|E3/E2 BT |EQ

p#|pepojocios{oajos|os

[H S I EECA S

[CFICECOCCICECACalCS

(3 EOE B CE R G

(3 [(30 T8 (B EE

87| 668564 [B3 62|81 [B0

SIFIS[5[H %S %55 % 5 a8 A
HEE R E G B S L ERI EIE EIE
IS EE GGG EEEE

EEEBEEEEEBEEEEER
ES:’-S;N?Bgﬁ;ﬂ?ﬂEHi‘

BlElS|»BRBHEEE BB 83

16 Bytos wih ' 28 btacemsssacke Brs

AF|AEAD el aCi Ak 8| A3

3 EEBEEEOEE R

AT A As | A Az a2 At A

oF |95 30 [eB[ecion [e6] @

7] % [s]oc]an] 2]a1 [0

&F| &€ ja0[s8ecian [es oo

7] 88 (65 |4 | 30| 82 |81 (80

Ineraal SFR Anea
idrect
128 By

Opteoral = This assa of mersasy is not contain i BOG1, | s avalable in other NCS5- 51 seres

MEMORY EXPANSION

In case memory (RAM or ROM) built in the microcontroller is not sufficient, it is possible to add
two external memory chips with capacity of 64Kb each. P2 and P3 1/O ports are used for their
addressing and data transmission.

Reading

—

A1s
Al4
a3
A1z
A1
A10

Rowl(64|3

AT
A6

;
 Port2 | Port3
14

®
=)
a
-

' Port0 |

TAHCT573

-«

Lower address byte writing |

The 8051 microcontroller has two pins for data read RD#(P3.7) and PSEN#.

The first one is used for reading data from external data memory (RAM), while the other is used
for reading data from external program memory (ROM). Both pins are active low.

A typical example of memory expansion by adding RAM and ROM chips (Hardward

architecture), is shown in figure above.
Even though additional memory is rarely used with the latest versions of the microcontrollers,
we will describe in short what happens when memory chips are connected according to the
previous schematic. The whole process described below is performed automatically.
e When the program during execution encounters an instruction which resides in external
memory (ROM), the microcontroller will activate its control output ALE and set the first
8 bits of address (A0-A7) on PO. IC circuit 74HCTS573 passes the first 8 bits to memory
address pins.
A signal on the ALE pin latches the IC circuit 74HCT573 and immediately afterwards 8
higher bits of address (A8-A15) appear on the port. In this way, a desired location of
additional program memory is addressed. It is left over to read its content.
Port PO pins are configured as inputs, the PSEN pin is activated and the microcontroller
reads from memory chip.
Similar occurs when it is necessary to read location from external RAM. Addressing is
performed in the same way, while read and write are performed via signals appearing on the
control outputs RD (is short for read) or WR (is short for write).

8051 REGISTERS
SFR (SPECIAL FUNCTION REGISTERS)

SFR can be seen as a sort of control panel for managing and monitoring the microcontroller.
Every register and each of the belonging bits has its name, specified address in RAM and strictly
defined role (e.g. controlling the timer, interrupt, serial connection, etc). Although there are 128
available memory slots for allocating SFR registers.. The rest has been left open intentionally to
allow future upgrades while retaining the compatibility with earlier models. This fact makes
possible to use programs developed for obsolete models long ago.

NAME FUNCTION HEX Bit-Addressable
ADDRES
A Accummmiator EO Yes
B Anthmmetic FD Yes
Data Pomter (1 Bvtes) — —
DPH Addressins exrernal memory &3 No
Addreszms exremal memory 82 No
1IE Interrupt enable control Al Tes
P InterTupt prioncy BE Yes
Pd Imput‘ouwtput port ich g0 Yes
Fl Input'output port latch < 1es

2 Input'ourpat port latch AD Yes
B3 Inpur'ourput port latch BY Yes
PCON Power conmol 27
PsW Program stamas DO
SCON Senal port control o8
SBUF Semial port data buffer oo
SP Stack pointer g1
TMOD Tmper'counter mode conirol i
TCON Timer 'counter control g3
TLO Tmmer 0 low byie
THD Tmmer { high byte
1L1 Timer 1 low byte
THI1 Tmmer 1 high byte

A REGISTER (ACCUMULATOR)

Value after Reset

ACC Bit name

bit? bit6 bit§ hitd bitd hit2 bit1 bitd

A register is a general-purpose register used for storing intermediate results obtained during
operation. Prior to executing an instruction upon any number or operand it is necessary to store it
in the accumulator first. All results obtained from arithmetical operations performed by the ALU
are stored in the accumulator. Data to be moved from one register to another must go through the
accumulator. In other words, the A register is the most commonly used register and it is
impossible to imagine a microcontroller without it. More than half instructions used by the 8051
microcontroller use somehow the accumulator.

B REGISTER

Multiplication and division can be performed only upon numbers stored in the A and B registers.
All other instructions in the program can use this register as a spare accumulator (A).
Instructions of multiplication and division can be applied only to operands located in registers

A and B. Other instructions can use this register as a secondary accumulator (A).

0 0 0 0 0 0 0 0 Value after Resat
B | | Bitname
hit? hité hits hitd hit3 hit2 hit1 hit0

During the process of writing a program, each register is called by its name so that their exact addresses
are not of importance for the user. During compilation, their names will be automatically replaced by
appropriate addresses.

R REGISTERS (R0O-R7)
RAM

RO|R1|R2|R3|R4|RS|R6|R7|
10| |Ro[R1|R2|R3|R4|RS|R6|R7

(7]
o
fak
f—
=
-
(4]
s
[ak]
I

This is a common name for 8 general-purpose registers (RO, R1, R2 ...R7). Even though they are
not true SFRs, they deserve to be discussed here because of their purpose. They occupy 4 banks
within RAM. Similar to the accumulator, they are used for temporary storing variables and
intermediate results during operation. Which one of these banks is to be active depends on two
bits of the PSW Register. Active bank is a bank the registers of which are currently used.

The following example best illustrates the purpose of these registers. Suppose it is necessary to
perform some arithmetical operations upon numbers previously stored in the R registers:
(RI+R2) - (R3+R4). Obviously, a register for temporary storing results of addition is needed.
This is how it looks in the program:

MOV A,R3; move number from R3 into accumulator

ADD A,R4; add number from R4 to accumulator (result remains in accumulator)
MOV R5,A; temporarily move the result from accumulator into R5

MOV A,R1; move number from R1 to accumulator

ADD A,R2; add number from R2 to accumulator

SUBB A,R5; Means: subtract number from R5 (there are R3+R4)

PROGRAM STATUS WORD (PSW) REGISTER

0 0 0 0 0 0 Value after Reset

PSW | cv | ac | fFo | RSt | RSO | oV P | Bitname
bit? bit6 bit5 bit4 bit3 bit2 bit1 bito

PSW register is one of the most important SFRs. It contains several status bits that reflect the
current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register

bank select bits, Overflow flag, parity bit and user-definable status flag.

P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set
(1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial
communication.

- Bit 1. This bit is intended to be used in the future versions of microcontrollers.

OV Overflow occurs when the result of an arithmetical operation is larger than 255 and cannot be
stored in one register. Overflow condition causes the OV bit to be set (1). Otherwise, it will be
cleared (0).

RS0, RS1 - Register bank select bits. These two bits are used to select one of four register banks
of RAM. By setting and clearing these bits, registers R0-R7 are stored in one of four banks of
RAM.

SPACE IN RAM
Bank0 00h-07h
Bank1 08h-0Fh
Bank2 10h-17h

1 1 Bank3 18h-1Fh

FO - Flag 0. This is a general-purpose bit available for use.

AC - Auxiliary Carry Flag is used for BCD operations only.

CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift
instructions.

DATA POINTER REGISTER (DPTR)
DPTR register is not a true one because it doesn't physically exist. It consists of two separate
registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may be treated as a

16-bit register or as two independent 8-bit registers. Their 16 bits are primarly used for external
memory addressing. Besides, the DPTR Register is usually used for storing data and
intermediate results.

Value after Reset

| | Bit name
bit6 bit5 bit4 bit3 bit2 bit1 bit0

A value stored in the Stack Pointer points to the first free stack address and permits stack
availability. Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack pops
decrement its value by 1. Upon any reset and power-on, the value 7 is stored in the Stack Pointer,
which means that the space of RAM reserved for the stack starts at this location. If another value
is written to this register, the entire Stack is moved to the new memory location.

PO, P1, P2, P3 - INPUT/OUTPUT REGISTERS

1 1 1 1 1 1 1 1 Value after Reset

PO | po7 | Pos | P05 | Po4 | P03 | P02 | PO | P00 | Bitname
bit7 bit6 bit5 bitd bt biz bt bitd

If neither external memory nor serial communication system are used then 4 ports within total of
32 input/output pins are available for connection to peripheral environment. Each bit within these
ports affects the state and performance of appropriate pin of the microcontroller. Thus, bit logic
state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa, voltage on a pin
reflects the state of appropriate port bit.

As mentioned, port bit state affects performance of port pins, i.e. whether they will be configured
as inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured as an output,
while if it is set (1), the appropriate pin will be configured as an input. Upon reset and power-on,
all port bits are set (1), which means that all appropriate pins will be configured as inputs.

I/O ports are directly connected to the microcontroller pins. Accordingly, logic state of these
registers can be checked by voltmeter and vice versa, voltage on the pins can be checked by
inspecting their bits.

8051 OSCILLATOR AND CLOCK

The manufacturers make available 8051 designs that can run at specified maximum and
minimum frequencies, typically 1 megahertz to 16 megahertz. Minimum frequencies imply that
some internal memories are dynamic and must always operate above a minimum frequency or
data will be lost. The oscillator formed by the crystal, capacitors and on — chip inverter generates
a pulse train at the frequency of the crystal. The time to execute the instruction is found by using
the expression,

T (inst) = (C * 12) / (crystal frequency)

Presently PHILIPS 8051 flash microcontrollers are working with the double speed of normal
8051 chip (40MHz operation) and\ CYGNAL 8051 series working with a speed of 100
MIPS.

ﬁ

0

27-47pF —— —— 27-47pF

It must be noted that there are various speed of the 8051 families. Speed refers to the maximum
oscillator frequency connected to XTAL. For example, a 12 MHz chip must be connected to a
crystal with 12MHz frequency or less. Likewise a 20KHz microcontroller requires a crystal
frequency of no more than 20MHz. When the 8051 is connected to a crystal oscillator and is
powered up, we can observe the frequency on the XTAL2 pins using the oscilloscope.

3 L] il (] i L] = il = e il

o pupuyuuyuuyguyun

}
]
ﬁ—-'-—-'- | pro—— I Tl T I i B I bl I
‘]

e Sl b L i

il |ty
e =

8051 MICROCONTROLLER POWER CONSUMPTION CONTROL

Generally speaking, the microcontroller is inactive for the most part and just waits for some
external signal in order to takes its role in a show. (This can cause some problems in case
batteries are used for power supply. In extreme cases, the only solution is to set the whole
electronics in sleep mode in order to minimize consumption. A typical example is a TV remote
controller: it can be out of use for months but when used again it takes less than a second to send
a command to TV receiver.) The AT89S53 uses approximately 25mA for regular operation,
which doesn't make it a pover-saving microcontroller. Anyway, it doesn’t have to be always like
that, it can easily switch the operating mode in order to reduce its total consumption to
approximately 40uA. Actually, there are two power-saving modes of operation:Idle and Power
Down.

—A—

Ean

P
1 [

R i

PD

POWER DOVWN mode

IDLE MODE

Upon the IDL bit of the PCON register is set, the microcontroller turns off the greatest power
consumer- CPU unit while peripheral units such as serial port, timers and interrupt system
continue operating normally consuming 6.5mA. In Idle mode, the state of all registers and I/O
ports remains unchanged.

In order to exit the Idle mode and make the microcontroller operate normally, it is necessary to
enable and execute any interrupt or reset. It will cause the IDL bit to be automatically cleared
and the program resumes operation from instruction having set the IDL bit. It is recommended
that first three instructions to execute now are NOP instructions. They don't perform any
operation but provide some time for the microcontroller to stabilize and prevents undesired
changes on the 1/O ports.

POWER DOWN MODE

By setting the PD bit of the PCON register from within the program, the microcontroller is set to

Power down mode, thus turning off its internal oscillator and reduces power consumption
enormously. The microcontroller can operate using only 2V power supply in power- down mode,

while a total power consumption is less than 40uA. The only way to get the microcontroller back
to normal mode is by reset.

While the microcontroller is in Power Down mode, the state of all SFR registers and I/O ports
remains unchanged. By setting it back into the normal mode, the contents of the SFR register is
lost, but the content of internal RAM is saved. Reset signal must be long enough, approximately
10mS, to enable stable operation of the quartz oscillator.

INPUT/OUTPUT PORTS (I/0 PORTS)

All 8051 microcontrollers have 4 I/O ports each comprising 8 bits which can be configured as
inputs or outputs. Accordingly, in total of 32 input/output pins enabling the microcontroller to be
connected to peripheral devices are available for use.

Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends on
its logic state. In order to configure a microcontroller pin as an output, it is necessary to apply a
logic zero (0) to appropriate I/O port bit. In this case, voltage level on appropriate pin will be 0.

Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a logic
one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5V (as is the
case with any TTL input). This may seem confusing but it becomes clear after studying simple
electronic circuits connected to an I/O pin.

Special Function
4 Registers
(SFRs)

MICROCONTROLLER

Output (0OW)
-

1o Reglister =3
(Port) 7
|

— -
Output Data (0}

INPUT/OUTPUT(1/0O)PIN

Figure above illustrates a simplified schematic of all circuits within the microcontroler connected
to one of its pins. It refers to all the pins except those of the PO port which do not have pull-up
resistors built-in.

vCC

Pull up
L] Resistor

Input Data ,/]
I

|
" trorer - I ‘
(.

L
Lrulpul Data
GND

ourPUT PIN
A logic zero (0) is applied to a bit of the P register. The output FE transistor is turned on, thus
connecting the appropriate pin to ground.

Input Deta @ or 1) _1 S Wnput (V)

'O Register l_
1

{Port)

INPUT PIN
A logic one (1) is applied to a bit of the P register. The output FE transistor is turned off and the
appropriate pin remains connected to the power supply voltage over a pull-up resistor of high
resistance.

Logic state (voltage) of any pin can be changed or read at any moment. A logic zero (0) and
logic one (1) are not equal. A logic one (0) represents a short circuit to ground. Such a pin acts as
an output.

A logic one (1) is “loosely” connected to the power supply voltage over a resistor of high
resistance. Since this voltage can be easily “reduced” by an external signal, such a pin acts as an
input.

PORT 0

The PO port is characterized by two functions. If external memory is used then the lower address
byte (addresses A0-A7) is applied on it.
Otherwise, all bits of this port are configured as inputs/outputs.

The other function is expressed when it is configured as an output.
Unlike other ports consisting of pins with built-in pull-up resistor connected by its end to 5 V
power supply, pins of this port have this resistor left out. This apparently small difference has its

consequences:
Input Data (0 or 1) Input
r _’—<' I AP
a lf“
L

Port 0 |
(l'0 Register)

If any pin of this port is configured as an input then it acts as if it “floats”. Such an input has
unlimited input resistance and indetermined potential.

VoG

External Pull-Up
Resistor

Port O 0
(VO register) |

L=
Output Data {DT‘:

When the pin is configured as an output, it acts as an “open drain”.

By applying logic 0 to a port bit, the appropriate pin will be connected to ground (0V).

By applying logic 1, the external output will keep on “floating”.

In order to apply logic 1 (5V) on this output pin, it is necessary to built in an external pull-up
resistor.

Only in case PO is used for addressing external memory, the microcontroller will provide internal
power supply source in order to supply its pins with logic one. There is no need to add external
pull-up resistors.

PORT 1

P1 is a true I/O port, because it doesn't have any alternative functions as is the case with PO, but
can be cofigured as general I/O only. It has a pull-up resistor built-in and is completely
compatible with TTL circuits.

PORT 2

P2 acts similarly to PO when external memory is used. Pins of this port occupy addresses
intended for external memory chip. This time it is about the higher address byte with addresses
AS8-A15. When no memory is added, this port can be used as a general input/output port showing
features similar to P1.

PORT 3

All port pins can be used as general I/O, but they also have an alternative function. In order to
use these alternative functions, a logic one (1) must be applied to appropriate bit of the P3
register. In tems of hardware, this port is similar to PO, with the difference that its pins have a

pull-up resistor built-in.

PIN'S CURRENT LIMITATIONS

When configured as outputs (logic zero (0)), single port pins can receive a current of 10mA. If
all 8 bits of a port are active, a total current must be limited to 15mA (port PO: 26mA). If all
ports (32 bits) are active, total maximum current must be limited to 7ImA. When these pins are
configured as inputs (logic 1), built-in pull-up resistors provide very weak current, but strong
enough to activate up to 4 TTL inputs of LS series.

8051 MICROCONTROLLER INTERRUPTS

INTERRUPT SERVICE ROUTINE

For every interrupt, there must be an interrupt service routine (ISR). When an interrupt is
invoked, the microcontroller runs the interrupt service routine. For every interrupt, there is a
fixed location in memory that holds the address of its ISR.

Interrupt ROM location P
(HEX)
Fesst 0000 e
External hardware mterrupt 0 (INT 0) 0003
Timer O mterrupt (TF 0) 000B P32(12)
External hardware mrerrupt 1 (INT 1) 0013
Timer 1 mterrupt (TF 1) 1B
Serial COM mterrupt (R1 and T1) 0023

There are five interrupt sources for the 8051, which means that they can recognize 5 different
events that can interrupt regular program execution. Each interrupt can be enabled or disabled by
setting bits of the IE register. Likewise, the whole interrupt system can be disabled by clearing
the EA bit of the same register. Refer to figure below.

- Interrupt

Now, it is necessary to explain a few details referring to external interrupts- INTO and INTT1. If
the ITO and IT1 bits of the TCON register are set, an interrupt will be generated on high to low
transition, i.e. on the falling pulse edge (only in that moment). If these bits are cleared, an
interrupt will be continuously executed as far as the pins are held low.

IE Register (Interrupt Enable)

0 0 0 0 0 0 Value after Reset
|E | EA ET2 | ES | ET1 | EX1 | ETO Bit name
bit7 b6 bits bitd4 bit3 b2 bitd

EA - global interrupt enable/disable:
0 - disables all interrupt requests.

1 - enables all individual interrupt requests.
ES - enables or disables serial interrupt:
0 - UART system cannot generate an interrupt.
1 - UART system enables an interrupt.
ETI - bit enables or disables Timer 1 interrupt:
0 - Timer 1 cannot generate an interrupt.
1 - Timer 1 enables an interrupt.
EXI - bit enables or disables external 1 interrupt:
0 - change of the pin INTO logic state cannot generate an interrupt.
1 - enables an external interrupt on the pin INTO state change.
ETO - bit enables or disables timer 0 interrupt:
0 - Timer 0 cannot generate an interrupt.
1 - enables timer 0 interrupt.
EXO - bit enables or disables external 0 interrupt:
0 - change of the INT1 pin logic state cannot generate an interrupt.
1 - enables an external interrupt on the pin INT1 state change.

INTERRUPT PRIORITIES

The IP Register (Interrupt Priority Register) specifies which one of existing interrupt sources
have higher and which one has lower priority. Interrupt priority is usually specified at the
beginning of the program. According to that, there are several possibilities:

1. If an interrupt of higher priority arrives while an interrupt is in progress, it will be
immediately stopped and the higher priority interrupt will be executed first.

2. Iftwo interrupt requests, at different priority levels, arrive at the same time then the
higher priority interrupt is serviced first.

. If the both interrupt requests, at the same priority level, occur one after another, the
one which came later has to wait until routine being in progress ends.
. If two interrupt requests of equal priority arrive at the same time then the interrupt to
be serviced is selected according to the following priority list:
I. External interrupt INTO
II. Timer O interrupt
External Interrupt INT1
IV. Timer 1 interrupt
V. Serial Communication Interrupt
HIGHEST TO LOWEST PRIORITY

. External Interrupt O (INT 0) Highest
. Timer Interrupt 0 (TF 0)
. External Interrupt 1 (INT 1)
Timer Interrupt 1 TF 1)
Serial Communication RI + TI) Lowest
IP Re gister (Interrupt Priority)

The IP register bits specify the priority level of each interrupt (high or low priority).

X X 0 0 0 0 Value after Reset

IP PT2 | PS | PT1 | PXi Bit name
hit7 hit6 hit5 hitd hit3 hit2

PS - Serial Port Interrupt priority bit

1. Priority O
2. Priority 1
PT1 - Timer 1 interrupt priority

1. Priority O
2. Priority 1
PX1 - External Interrupt INT1 priority
1. Priority O
2. Priority 1
PTO - Timer O Interrupt Priority
1. Priority O
2. Priority 1
PXO0 - External Interrupt INTO Priority
1. Priority O
2. Priority 1
Upon reset, the IP register contains all Os, making the priority sequence based on the priority

table. To give a higher priority to any of the interrupts, we make the corresponding bit in the
IP register high. When two or more interrupt bits in the IP register are set to high, those
interrupts having higher priority than others are serviced according to the sequence of the
priority table.Upon receiving an interrupt request, following scenario takes place:

1. Current instruction is executed first.

2. Address of the instruction that would be executed next if there was no interrupt

request is put away to stack.

3. Depending on the interrupt in question, program counter will take value of one of
possible 6 vectors (addresses) according to the table below

Interrupt souarce Vector (address in hex)
3H

0BH

13H

1BH

RI TI. SPIF 23H

TF2, EXF2 2BH

These addresses store appropriate subroutines processing interrupts. Instead of them, there are
usually jump instructions specifying locations on which these subroutines reside.

When an interrupt routine is executed, the address of the next instruction to execute is poped
from the stack to the program counter and interrupted program resumes operation from where it
left off. From the moment an interrupt is enabled, the microcontroller is on alert all the time.
When an interrupt request arrives, the program execution is stopped, electronics recognizes the
source and the program “jumps” to the appropriate address (see the table above). This address
usually stores a jump instruction specifying the start of appropriate subroutine. Upon its
execution, the program resumes operation from where it left off.

RESET
Reset occurs when the RS pin is supplied with a positive pulse in duration of at least 2 machine

cycles (24 clock cycles of crystal oscillator). After that, the microcontroller generates an internal
reset signal which clears all SFRs, except SBUF registers, Stack Pointer and ports (the state of
the first two ports is not defined, while FF value is written to the ports configuring all their pins
as inputs). Depending on surrounding and purpose of device, the RS pin is usually connected to a
power-on reset push button or circuit or to both of them. Figure below illustrates one of the
simplest circuit providing safe power-on reset.

Basically, everything is very simple: after turning the power on, electrical capacitor is being
charged for several milliseconds through a resistor connected to the ground. The pin is driven
high during this process. When the capacitor is charged, power supply voltage is already stable
and the pin remains connected to the ground, thus providing normal operation of the
microcontroller. Pressing the reset button causes the capacitor to be temporarily discharged and
the microcontroller is reset. When released, the whole process is repeated.

Microcontrollers normally operate at very high speed. The use of 12 Mhz quartz crystal enables
1.000.000 instructions to be executed per second. Basically, there is no need for higher operating
rate. In case it is needed, it is easy to built in a crystal for high frequency. The problem arises
when it is necessary to slow down the operation of the microcontroller. For example during
testing in real environment when it is necessary to execute several instructions step by step in
order to check I/O pins' logic state.

Interrupt system of the 8051 microcontroller practically stops operation of the microcontroller
and enables instructions to be executed one after another by pressing the button. Two interrupt
features enable that: Interrupt request is ignored if an interrupt of the same priority level is in
progress. Upon interrupt routine execution, a new interrupt is not executed until at least one
instruction from the main program is executed. In order to use this in practice, the following
steps should be done: External interrupt sensitive to the signal level should be enabled (for
example INTO).

Three following instructions should be inserted into the program (at the 03hex. address):

it}

JNB P32§ <e— Mecans: wait here until the pin P3.2 (INTO) 1s set to “17.
JB P3.2§ -<«— Means: wait here until the pin P3.2 (INT0) 1s set to 0.
RETI <— Mecans: go back to the main program

As soon as the P3.2 pin is cleared (for example, by pressing the button), the microcontroller will
stop program execution and jump to the 03hex address will be executed. This address stores a
short interrupt routine consisting of 3 instructions.

The first instruction is executed until the push button is realised (logic one (1) on the P3.2 pin).
The second instruction is executed until the push button is pressed again. Immediately after that,
the RETT instruction is executed and the processor resumes operation of the main program. Upon
execution of any program instruction, the interrupt INTO is generated and the whole procedure is
repeated (push button is still pressed). In other words, one button press - one instruction.

80SIADDRESSING MODES & INSTRUCTION SET
ADDRESSING MODES

The CPU can access data in various ways. The data could be in a register, or in memory, or to
be provided as an immediate value. These various ways of accessing data are called addressing
modes. The various addressing modes are determined when it is designed and therefore cannot
be changed by the programmer.

8051 ADDRESSING MODES

The 8051 provide a total of five distinct addressing modes. They are:

1. Immediate

2. Direct

3. Register

4. Register indirect

5. Indexed

We can use direct or register indirect addressing modes to access data stored either in RAM
or registers of the 8051.

i. IMMEDIATE ADDRESSING MODE

Immediate addressing is so-named because the value to be stored in memory immediately
follows the operation code in memory. That is to say, the instruction itself dictates what value
will be stored in memory. Immediate data has to be preceded by “#” sign.

For example, the instruction: MOV A, #20H

This instruction uses Immediate Addressing because the Accumulator will be loaded with the
value that immediately follows; in this case 20 (hexadecimal). Immediate addressing is very
fast since the value to be loaded is included in the instruction. However, since the value to be
loaded is fixed at compile-time it is not very flexible.

ii. DIRECT ADDRESSING

In Direct addressing the value to be stored in memory is obtained by directly retrieving it
from another memory location.

For example: MOV A, 30H

This instruction will read the data from the Internal RAM address 30 (hexadecimal) and store
it in the Accumulator.

Also, it is important to note that when using direct addressing any instruction, which refers to
an address between 00h, and 7Fh is referring to Internal Memory. Any instruction, which
refers to an address between 80h and FFh, is referring to the SFR control registers. Direct
addressing is the only method of accessing the special function registers. The lower 128 bytes

of internal RAM are also directly addressable.
iii. REGISTER ADDRESSING

Register addressing accesses the eight working registers (RO - R7) of the selected register
bank. This instruction put the operand in a register and manipulates it by referring to the
register (by name) in the instruction & in this type of instruction the source & destination
registers must match in size.

Example: Mov A, RO ;A ? contents (R0)
Mov R2, A ;R2 ? contents (A)

ADD A, R1 ;A ? contents (A) + contents (R1)

The least significant bit of the instruction op-code indicates which register is to be used.
ACC, B, DPTR and CY, can also be addressed as registers.

iv. REGISTER INDIRECT ADDRESSING

Register indirect addressing is a very powerful addressing mode, which in many cases
provides an exceptional level of flexibility. Indirect addressing is also the only way to access
the extra 128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

Example: MOV A, @R0

This instruction causes the 8051 to analyze the value of the RO register. The 8051 will then
load the accumulator with the value from Internal RAM, which is found at the address
indicated by RO.

For example, let’s say RO holds the value 40H and Internal RAM address 40H holds the
value 67H. When the above instruction is executed the 8051 will check the value of RO. Since
RO holds 40H the 8051 will get the value out of Internal RAM address 40H (which holds
67H) and store it in the Accumulator. Thus, the Accumulator ends up holding 67H.

Indirect addressing always refers to Internal RAM; it never refers to an SFR. Indirect
addressing only can access the upper half of the internal RAM. Access to the full 64 Kbytes
of external data memory address space is accomplished by using the 16-bit data pointer.
Execution of PUSH and POP instructions also uses register indirect addressing. The stack
may reside anywhere in the internal RAM.

v. INDEX ADDRESSING

Indexed addressing mode is widely used in accessing data elements of look-up table entries
located in the program ROM space of the 8051. Indexed addressing use a register for storing
the pointer and another register for an offset. The Effective address is the sum of base &
offset.

Example:
MOVC A, @A+DPTR ; A ? ext_code_mem [(A + DPTR)]
MOVC A, @A+PC ; A ? ext_code_mem [(A + PC)]

8051 INSTRUCTION SET
The 8051, 8-bit microcontroller family instruction set includes 111 instructions, 49 of which
are single-byte, 45 two-byte and 17 three-byte instructions. The instruction op-code format
consists of a function mnemonic followed by a destination & source operand field. The
instruction set is divided into four functional groups:

1. Data transfer

2. Arithmetic

3. Logic

4. Control transfer

i. DATA TRANSFER INSTRUCTIONS
Data transfer operations are divided into three classes:
I. General - purpose
II. Accumulator-specific
III. Address-object
None of these operations affects the PSW flag settings except a POP or MOV directly to the
PSW.
Examples
MOV A, #45 - Immediate Addressing Mode
MOV A, R1 - Register Addressing Mode
MOYV 45h,A - Direct Addressing Mode
MOYV @R1, 32h - Indirect Addressing Mode

ii. ARITHMETIC INSTRUCTIONS

The MCS-51 family microcontrollers have four basic mathematical operations. Only 8-bit
operations using unsigned arithmetic are supported directly. The overflow flag, however,
permits the addition and subtraction operation to serve for both unsigned and signed binary
integers. Arithmetic can also be performed directly on packed BCD representations.
Examples

ADD A, #84 - Immediate Addressing Mode

SUBB A, R2 - Register Addressing Mode

ADD 73h,A - Direct Addressing Mode

ADDC@R1, 25h - Indirect Addressing Mode

iii. LOGIC INSTRUCTIONS
The MCS-51 family microcontrollers perform basic logic operations on both bit and byte

Operands

BIT LEVEL (SINGLE OPERAND) OPERATIONS

In 8051 internal RAM and SFRs can be addressed by the address of each bit within a byte.
This bit addressing is very convenient when we wish to alter a single bit of a byte. The ability
to operate on individual bits creates the need for an area of RAM that contains data addresses
that hold a single bit. The bit addresses are numbered from 00H to 7FH to represent the 128d
bit addresses that exist from byte addresses 20H to 2FH.
I. CLR sets A or any directly addressable bit to zero (0).
II. SETB sets any directly bit-addressable bit to one (1).
CPL is used to complement the contents of the A register without affecting any flag,

IV. or any directly addressable bit location.

V. RL, RLC, RR, RRC, SWAP are the five operations that can be performed on A. RL,
rotate left, RR, rotate right, RLC, rotate left through carry, RRC, rotate right through
carry, and SWAP, rotate left four. For RLC and RRC the CY flag become equal to
the last bit rotated out. SWAP rotates A left four places to exchange bits 3 through 0
with bits 7 through 4.

BYTE LEVEL (TWO-OPERAND) OPERATIONS

I. ANL performs bit wise logical AND of two operands (for both bit and byte operands)
and returns the result to the location of the first operand.
II. ORL performs bit wise logical OR of two source operands (for both bit and byte
operands) and returns the result to the location of the first operand.
XRL performs logical Exclusive OR of two source operands (byte operands) and
returns the result to the location of the first operand.

Example

ANL A, #45h - Immediate Addressing Mode
ORL A, R2 - Register Addressing Mode
XRL 52h, A - Direct Addressing Mode

ANL @R3, 65h - Indirect Addressing Mode

iv. CONTROL TRANSFER INSTRUCTIONS

There are three classes of control transfer operations: unconditional calls, returns, jumps,

conditional jumps, and interrupts. All control transfer operations, some upon a specific
condition, cause the program execution to continue a non-sequential location in program
memory.

Example

CJINE A#22H,loop - Immediate Addressing Mode
DJNZ R1.,loop - Register Addressing Mode

DJNZ 30H,loop - Direct Addressing Mode

JMP @A+DPTR - Indirect Addressing Mode

NOTES ON DATA ADDRESSING MODES

Rn - Working register RO-R7

direct - 128 internal RAM locations, any 1/O port,control or status register

@R - Indirect internal or external RAM location addressed by register RO or R1
#data - 8-bit constant included in instruction

#data 16 - 16-bit constant included as bytes 2 and 3 of instruction

Bit - 128 software flags, any bit-addressable 1/0 pin, control or status bit

A - Accumulator

NOTES ON PROGRAM ADDRESSING MODES:

addr16 - Destination address for LCALL and LIMP may be anywhere within
the 64-Kbyte program memory address space.

addr11 - Destination address for ACALL and AJMP will be within the same 2-
Kbyte page of program memory as the first byte of the following

instruction.

rel - SJMP and all conditional jumps include an 8-bit offset byte. Range is +
127/- 128 bytes relative to the first byte of the following instruction.

Instruction Set of 8051 pc

The process of writing program for the microcontroller mainly consists of giving instructions
(commands) in the specific order in which they should be executed in order to carry out a
specific task.

Types of instructions
Depending on operation they perform, all instructions are divided in several groups:

Arithmetic Instructions

Branch Instructions

Data Transfer Instructions

Logic Instructions

Bit-oriented Instructions
The first part of each instruction, called MNEMONIC refers to the operation an instruction
performs (copy, addition, logic operation etc.). Mnemonics are abbreviations of the name of
operation being executed. The other part of instruction, called OPERAND is separated from

mnemonic by at least one whitespace and defines data being processed by instructions. Some of
the instructions have no operand, while some of them have one, two or three. If there is more
than one operand in an instruction, they are separated by a comma.

Arithmetic instructions

Arithmetic instructions perform several basic operations such as addition, subtraction, division,
multiplication etc. After execution, the result is stored in the first operand.

Mnemonic

ADD A,Rn

ADD A, direct

ADD A,@Ri

ADD A #data

ADDC A,Rn

ADDC A,direct

ADDC A,@Ri

ADDC A #data

SUBB A,Rn

SUBB A, direct

SUBB A,@Ri

SUBB A #data

INC A

INC Rn

ARITHMETIC INSTRUCTIONS

Description Byte

Adds the register to the accumulator

Adds the direct byte to the accumulator

Adds the indirect RAM to the accumulator

Adds the immediate data to the accumulator

Adds the register to the accumulator with a carry flag

Adds the direct byte to the accumulator with a carry flag

Adds the indirect RAM to the accumulator with a carry flag

Adds the immediate data to the accumulator with a carry flag

Subtracts the register from the accumulator with a borrow

Subtracts the direct byte from the accumulator with a borrow

Subtracts the indirect RAM from the accumulator with a borrow

Subtracts the immediate data from the accumulator with a borrow

Increments the accumulator by 1

Increments the register by 1

Cycle

INC Rx Increments the direct byte by 1
INC @Ri Increments the indirect RAM by 1
DEC A Decrements the accumulator by 1
DEC Rn Decrements the register by 1
DEC Rx Decrements the direct byte by 1
DEC @Ri Decrements the indirect RAM by 1
INC DPTR Increments the Data Pointer by 1
MUL AB Multiplies A and B
Divides A by B

Decimal adjustment of the accumulator according to BCD code

Branch Instructions

There are two kinds of branch instructions:

Unconditional jump instructions: upon their execution a jump to a new location from where the
program continues execution is executed.

Conditional jump instructions: a jump to a new program location is executed only if a specified
condition is met. Otherwise, the program normally proceeds with the next instruction.

BRANCH INSTRUCTIONS

Mnemonic Description Byte Cycle
ACALL addrl1 Absolute subroutine call
LCALL addrl6 Long subroutine call
RET Returns from subroutine
RETI Returns from interrupt subroutine

AJMP addrl1 Absolute jump

LIMP addr16 Long jump
SIMP rel Short jump (from —128 to +127 locations relative to the following instruction)
JC rel Jump if carry flag is set. Short jump.
INC rel Jump if carry flag is not set. Short jump.
JB bit,rel Jump if direct bit is set. Short jump.
JBC bit,rel Jump if direct bit is set and clears bit. Short jump.
JMP @A+DPTR Jump indirect relative to the DPTR
JZ rel Jump if the accumulator is zero. Short jump.
INZ rel Jump if the accumulator is not zero. Short jump.
CINE A, direct,rel Compares direct byte to the accumulator and jumps if not equal. Short jump.
CJINE A #data,rel Compares immediate data to the accumulator and jumps if not equal. Short jump.
CJINE Rn,#data,rel Compares immediate data to the register and jumps if not equal. Short jump.
CINE @Ri,#data,rel Compares immediate data to indirect register and jumps if not equal. Short jump.
DIJNZ Rn,rel Decrements register and jumps if not 0. Short jump.
DJNZ Rx,rel Decrements direct byte and jump if not 0. Short jump.

NOP No operation

Data Transfer Instructions

Data transfer instructions move the content of one register to another. The register the content of
which is moved remains unchanged. If they have the suffix “X” (MOVX), the data is exchanged
with external memory.

DATA TRANSFER INSTRUCTIONS

Mnemonic Description Byte Cycle

MOV A,Rn

MOV A, direct

MOV A,@Ri

MOV A, #data

MOV Rn,A

MOV Rn,direct

MOV Rn, #data

MOV direct,A

MOV direct,Rn

MOV direct,direct

MOV direct,@Ri

MOV direct,#data

MOV @Ri,A

MOV @Ri,direct

MOV @Ri,#data

MOV DPTR,#data

Moves the register to the accumulator

Moves the direct byte to the accumulator

Moves the indirect RAM to the accumulator

Moves the immediate data to the accumulator

Moves the accumulator to the register

Moves the direct byte to the register

Moves the immediate data to the register

Moves the accumulator to the direct byte

Moves the register to the direct byte

Moves the direct byte to the direct byte

Moves the indirect RAM to the direct byte

Moves the immediate data to the direct byte

Moves the accumulator to the indirect RAM

Moves the direct byte to the indirect RAM

Moves the immediate data to the indirect RAM

Moves a 16-bit data to the data pointer

MOVC A,@A+DPTR

Moves the code byte relative to the DPTR to the accumulator (address=A+DPTR)

MOVC A,@A+PC Moves the code byte relative to the PC to the accumulator (address=A+PC)

MOVX A,@Ri Moves the external RAM (8-bit address) to the accumulator

MOVX A,@DPTR Moves the external RAM (16-bit address) to the accumulator

MOVX @Ri,A Moves the accumulator to the external RAM (8-bit address)

MOVX @DPTR,A

PUSH direct

POP direct

XCH A,Rn

XCH A, direct

XCH A,@Ri

XCHD A,@Ri

Moves the accumulator to the external RAM (16-bit address)

Pushes the direct byte onto the stack

Pops the direct byte from the stack/td>

Exchanges the register with the accumulator

Exchanges the direct byte with the accumulator

Exchanges the indirect RAM with the accumulator

Exchanges the low-order nibble indirect RAM with the accumulator

Logic Instructions: Logic instructions perform logic operations upon corresponding bits of two
registers. After execution, the result is stored in the first operand.

Mnemonic

ANL A,Rn

ANL A, direct

ANL A,@Ri

ANL A #data

ANL direct,A

ANL direct,#data

ORL A,Rn

ORL A, direct

ORL A,@Ri

ORL direct,A

ORL direct,#data

LOGIC INSTRUCTIONS

Description Byte Cycle

AND register to accumulator

AND direct byte to accumulator

AND indirect RAM to accumulator

AND immediate data to accumulator

AND accumulator to direct byte

AND immediae data to direct register

OR register to accumulator

OR direct byte to accumulator

OR indirect RAM to accumulator

OR accumulator to direct byte

OR immediate data to direct byte

XRL A,Rn Exclusive OR register to accumulator

XRL A,direct Exclusive OR direct byte to accumulator

XRL A,@Ri Exclusive OR indirect RAM to accumulator

XRL A,#data Exclusive OR immediate data to accumulator

XRL direct,A Exclusive OR accumulator to direct byte

XORL direct,#data Exclusive OR immediate data to direct byte

CLR A Clears the accumulator

CPL A Complements the accumulator (1=0, 0=1)

SWAP A Swaps nibbles within the accumulator

Rotates bits in the accumulator left

Rotates bits in the accumulator left through carry

Rotates bits in the accumulator right

Rotates bits in the accumulator right through carry

Bit-oriented Instructions

Similar to logic instructions, bit-oriented instructions perform logic operations. The difference is
that these are performed upon single bits.

BIT-ORIENTED INSTRUCTIONS

Mnemonic Description

CLRC Clears the carry flag

CLR bit Clears the direct bit

SETB C Sets the carry flag

SETB bit Sets the direct bit

CPLC Complements the carry flag

CPL bit Complements the direct bit

ANL C,bit AND direct bit to the carry flag

ANL C,/bit AND complements of direct bit to the carry flag

ORL C,bit OR direct bit to the carry flag

ORL C,/bit OR complements of direct bit to the carry flag

MOV C,bit Moves the direct bit to the carry flag

MOV bit,C Moves the carry flag to the direct bit

Description of all 8051 instructions

Here is a list of the operands and their meanings:

A -accumulator;

Rn - is one of working registers (R0-R7) in the currently active RAM memory bank;
Direct - is any 8-bit address register of RAM. It can be any general-purpose register or a
SFR (I/0 port, control register etc.);

@R - is indirect internal or external RAM location addressed by register RO or R1;
#data - is an 8-bit constant included in instruction (0-255);

#datal6 - is a 16-bit constant included as bytes 2 and 3 in instruction (0-65535);

addr16 - is a 16-bit address. May be anywhere within 64KB of program memory;
addrl11 - is an 11-bit address. May be within the same 2KB page of program memory as
the first byte of the following instruction;

rel - is the address of a close memory location (from -128 to +127 relative to the first

byte of the following instruction). On the basis of it, assembler computes the value to add
or subtract from the number currently stored in the program counter;

bit - is any bit-addressable I/O pin, control or status bit; and
C - is carry flag of the status register (register PSW).

8051 ASSEMBLY LANGUAGE PROGRAMMING TOOLS
ACALL addrl1 - Absolute subroutine call
addrl1: Subroutine address

Description: Instruction unconditionally calls a subroutine located at the specified code address.
Therefore, the current address and the address of called subroutine must be within the same 2K
byte block of the program memory, starting from the first byte of the instruction following
ACALL.

Syntax: ACALL[subroutinename]
STATUS register flags: No flags are affected.

EXAMPLE:

Before execution: PC=0123h
After execution: PC=0345h

ADD A,Rn - Adds the register Rn to the accumulator

A: accumulator, Rn: any R register (R0-R7)

Description: Instruction adds the register Rn (R0-R7) to the accumulator. After addition, the
result is stored in the accumulator.

Syntax: ADD A,Rn;

STATUS register flags: C, OV and AC

EXAMPLE:

(Label)

Before execution: A=2Eh (46 dec.) R4=12h (18 dec.)
After execution: A=40h (64 dec.) R4=12h

ADD A,@Ri - Adds the indirect RAM to the accumulator
A: accumulator, Ri: Register RO or R1

Description: Instruction adds the indirect RAM to the accumulator. Address of indirect RAM is
stored in the Ri register (RO or R1). After addition, the result is stored in the accumulator.
Syntax: ADD A,@Ri

STATUS register flags: C, OV and AC

EXAMPLE:

(Label)

Register address: SUM = 4Fh RO=4Fh
Before execution: A= 16h (22 dec.) SUM= 33h (51 dec.)
After execution : A=49%h (73 dec.)

ADD A, direct - Adds the direct byte to the accumulator

A: accumulator, Direct: Arbitrary register with address 0 - 255 (0 - FFh)

Description: Instruction adds the direct byte to the accumulator. As it is direct addressing, the
direct can be any SFR or general-purpose register with address 0-7 Fh. The result is stored in the
accumulator.

Syntax: ADD A, register name

STATUS register flags: C, OV and AC

EXAMPLE:

(Label)

Before execution: SUM= 33h (51 dec.) A= 16h (22 dec.)
After execution: SUM= 33h (73 dec.) A=49h (73 dec.)

ADDC A,Rn - Adds the register to the accumulator with a carry flag

A: accumulator, Rn: any R register (R0-R7)

Description: Instruction adds the accumulator with a carry flag and Rn register (R0-R7). After
addition, the result is stored in the accumulator.

Syntax: ADDC A,Rn

STATUS register flags: C, OV and AC

EXAMPLE:

0122
0123 (Label) ADDC A,RO
0124

Before execution: A= C3h (195 dec.) RO= AAh (170 dec.) C=1
After execution: A= 6Eh (110 dec.) AC=0, C=1, OV=1

ADD A #data - Adds the immediate data to the accumulator

A: accumulator, Data: constant within 0-255 (0-FFh)

Description: Instruction adds data (0-255) to the accumulator. After addition, the result is stored
in the accumulator.

Syntax: ADD A #data;

STATUS register flags: C, OV and AC

EXAMPLE:

0122 .-
0123 (Label)

0l1lz4

Before execution: A= 16h (22 dec.)
After execution: A=49h (73 dec.)

ADDC A, direct - Adds the direct byte to the accumulator with a carry flag

A: accumulator, Direct: arbitrary register with address 0-255 (0-FFh)

Description: Instruction adds the direct byte to the accumulator with a carry flag. As it is direct
addressing, the register can be any SFRs or general purpose register with address 0-7Fh (0-
127dec.). The result is stored in the accumulator.

Syntax: ADDC A, register address;

STATUS register flags: C, OV and AC

EXAMPLE:

0122 50 c
0123 (Label) ADDC A, TEMP
0124

Before execution: A= C3h (195 dec.) TEMP = AAh (170 dec.) C=1
After execution: A= 6Eh (110 dec.) AC=0, C=1, OV=1

ADDC A,@Ri - Adds the indirect RAM to the accumulator with a carry flag

A: accumulator, Ri: Register RO or R1

Description: Instruction adds the indirect RAM to the accumulator with a carry flag. RAM
address is stored in the Ri register (RO or R1). After addition, the result is stored in the
accumulator.

Syntax: ADDC A,@Ri

STATUS register flags: C, OV and AC

EXAMPLE:

0122 ...
0123 (Label) ADDC A, QRO
0124

Register address: SUM = 4Fh RO=4Fh
Before execution: A= C3h (195 dec.) SUM = AAh (170 dec.) C=1
After execution: A= 6Eh (110 dec.) AC=0, C=1, OV=1

ADDC A #data - Adds the immediate data to the accumulator with a carry flag
A: accumulator, Data: constant with address 0-255 (0-FFh)
Description: Instruction adds data (0-255) to the accumulator with a carry flag. After addition,
the result is stored in the accumulator.
Syntax: ADDC A #data;
STATUS register flags: C, OV and AC
EXAMPLE:
0122

0123 (Label)
0124

Before execution: A= C3h (195 dec.) C=1
After execution: A= 6Dh (109 dec.) AC=0, C=1, OV=1

AJMP addrl1 - Absoulte jump
addrl1: Jump address

Description: Program continues execution after executing a jump to the specified address.
Similar to the ACALL instruction, the jump must be executed within the same 2K byte block of
program memory starting from the first byte of the instruction following AJMP.

Syntax: AJMP address (label)

STATUS register flags: No flags are affected

EXAMPLE:

(Label) AITMP

Before execution: PC=0345h SP=07h
After execution: PC=0123h SP=09%h

ANL A,Rn - AND register to the accumulator

A: accumulator, Rn: any R register (R0O-R7)

Description: Instruction performs logic AND operation between the accumulator and Rn register.
The result is stored in the accumulator.

Syntax: ANL A,Rn

STATUS register flags: No flags are affected

EXAMPLE:

Before execution: A= C3h (11000011 Bin.)
R5=55h (01010101 Bin.)
After execution: A=41h (01000001 Bin.)

ANL A, direct - AND direct byte to the accumulator
A: accumulator, Direct: arbitrary register with address 0 - 255 (0 - FFh)
Description: Instruction performs logic AND operation between the accumulator and drect

register. As it is direct addressing, the register can be any SFRs or general-purpose register with
address 0-7Fh (0-127 dec.). The result is stored in the accumulator.

Syntax: ANL A,direct

STATUS register flags: No flags are affected

EXAMPLE:

(Label) ANL A, MASK

Before execution: A= C3h (11000011 Bin.)
MASK=55h (01010101 Bin.)
After execution: A=41h (01000001 Bin.)

ANL A,@Ri - AND indirect RAM to the accumulator

A: accumulator, Ri: Register RO or R1

Description: Instruction performs logic AND operation between the accumulator and register. As
it is indirect addressing, the register address is stored in the Ri register (RO or R1). The result is
stored in the accumulator.

Syntax: ANL A,@Ri

STATUS register flags: No flags are affected

EXAMPLE:

(Label) ANL A, RRO

Register address SUM = 4Fh R0=4Fh
Before execution: A= C3h (11000011 Bin.)
RO=55h (01010101 Bin.)

After execution: A=41h (01000001 Bin.)

ANL A, #data - AND immediate data to the accumulator

A: accumulator, Data: constant in the range of 0-255 (0-FFh)

Description: Instruction performs logic AND operation between the accumulator and data. The
result is stored in the accumulator.

Syntax: ANL A #data

STATUS register flags: No flags are affected

EXAMPLE:

(Labela)

Beforeexecution:A=C3h(11000011Bin.)
After execution: A=41h (01000001 Bin.)

ANL direct,A - AND accumulator to direct byte

Direct: arbitrary register with address 0-255 (0-FFh), A: accumulator

Description: Instruction performs logic AND operation between direct byte and accumulator. As
it is direct addressing, the register can be any SFRs or general-purpose register with address 0-
7Fh (0-127 dec.). The result is stored in the direct byte.

Syntax: ANL register address,A

STATUS register flags: No flags are affected.

EXAMPLE:

(Label)

Before execution: A= C3h (11000011 Bin.)
MASK=55h (01010101 Bin.)
After execution: MASK=41h (01000001 Bin.)

ANL direct,#data - AND immediate data to direct byte

Direct: Arbitrary register with address 0 - 255 (0 - FFh), Data: constant in the range between 0-
255 (0-FFh)

Description: Instruction performs logic AND operation between direct byte and data. As it is
direct addressing, the register can be any SFRs or general-purpose register with address 0-7Fh
(0-127 dec.). The result is stored in the direct byte.

Syntax: ANL register address ,#data

STATUS register flags: No flags are affected

EXAMPLE:

(Label) MASK, #C3h

Before execution: X= C3h (11000011 Bin.) MASK= 55h (01010101 Bin.) After execution:
MASK=41h (01000001 Bin.)

ANL C,bit - AND direct bit to the carry flag
C: Carry flag, Bit: any bit of RAM
Description: Instruction performs logic AND operation between the direct bit and the carry flag.

BIT C C AND BIT

Syntax: ANL C, bit address
STATUS register flags: C

EXAMPLE:

(Label) ANL C,ACC.7

Before execution: ACC=43h (01000011 Bin.) C=1
After execution: ACC=43h (01000011 Bin.) C=0

ANL C,/bit - AND complements of direct bit to the carry flag

C: carry flag, Bit: any bit of RAM

Description: Instruction performs logic AND operation between inverted addressed bit and the
carry flag. The result is stored in the carry flag.

T BIT C CANDBIT

1

1
0 0

0 1

Syntax: ANL C,/[bit address]
STATUS register flags: No flags are affected

EXAMPLE:

Qa2
0223 (Label) ANL C,/ACC.7
0224

Before execution: ACC=43h (01000011 Bin.) C=1
After execution: ACC=43h (01000011 Bin.) C=1

CJINE A.direct,rel - Compares direct byte to the accumulator and jumps if not equal

A: accumulator, Direct: arbitrary register with address 0-255 (0-FFh), addr: jump address
Description: Instruction first compares the number in the accumulator with the directly addressed
byte. If they are equal, the program proceeds with execution. Otherwise, a jump to the specified
address will be executed. This is a short jump instruction, which means that the address of a new
location must be relatively near the current one (-128 to +127 locations relative to the first
following instruction).

Syntax: CJNE A, direct,[jump address]

STATUS register flags: C

EXAMPLE:

(Label) A, MAX, JUMP1

Before execution: PC=0145h A=27h
After execution: if MAX#27: PC=0123h
If MAX=27: PC=0146h

CJINE A #data,rel - Compares immediate data to the accumulator and jumps if not equal

A: accumulator, Data: constant in the range of 0-255 (0-FFh)

Description: Instruction first compares the number in the accumulator with the immediate data. If
they are equal, the program proceeds with execution. Otherwise, a jump to the specified address
will be executed. This is a short jump instruction, which means that the address of a new location
must be relatively near the current one (-128 to +127 locations relative to the first following
instruction).

Syntax: CJNE A,X,[jump address]

STATUS register flags: C

EXAMPLE:

CINE A, 33, JUMPZ2

v

Before execution: PC=0445h
After execution: If A#33: PC=0423h
If A=33: PC=0446h

CJINE Rn,#data,rel - Compares immediate data to the register Rn and jumps if not equal

Rn: Any R register (R0-R7), Data: Constant in the range of 0 - 255 (0-FFh), addr: Jump address
Description: Instruction first compares immediate data to the register Rn. If they are equal, the
program proceeds with execution. Otherwise, a jump to the specified address will be executed.
This is a short jump instruction, which means that the address of a new location must be
relatively near the current one (-128 to + 127 locations relative to the first following instruction).
Syntax: CJNE Rn,data,[jump address]

STATUS register flags: C

EXAMPLE:

0345 (Label) CJINE
0346
Before execution: PC=0345h

After execution: If R5#44h: PC=0323h
If R5=44h: PC=0346h

G
2

< U —ccmemmemeaaad
W

CJNE @Ri,#data,rel - Compares immediate data to indirectly addressed register and jumps if not
equal

Ri: Register RO or R1, Data: Constant in the range of 0 - 255 (0-FFh)

Description: This instruction first compares immediate data to indirectly addressed register. If
they are equal, the program proceeds with execution. Otherwise, a jump to the specified address
in the program will be executed. This is a short jump instruction, which means that the address of
a new location must be relatively near the current one (-128 to +127 locations relative to the next
instruction).

Syntax: CJNE @Ri,data,[jump address]

STATUS register flags: C

EXAMPLE:

0346

Before execution: Register Address SUM=F3h
PC=0345h RO=F3h

After execution: If SUM#44h: PC=0323h

If SUM=44h: PC=0346h

CLR A - Clears the accumulator

A: accumulator

Description: Instruction clears the accumulator.
Syntax: CLR A

STATUS register flags: No flags are affected.
EXAMPLE:

0822
0323
0324

After execution: A=0

CLR C - clears the carry flag

C: Carry flag

Description: Instruction clears the carry flag.
Syntax: CLR C

STATUS register flags: C

EXAMPLE:

OB 22
OB 23
0324

After execution: C=0

CLR bit - clears the direct bit
Bit: any bit of RAM

Description: Instruction clears the specified bit.

@RO, 44, JUMPA4

\J

Syntax: CLR [bit address];

Bytes: 2 (instruction code, bit address);
STATUS register flags: No flags are affected.
EXAMPLE:

0322
0323
0324

Before execution: P0.3=1 (input pin)
After execution: P0.3=0 (output pin)

CPL A - Complements the accumulator

A: accumulator

Description: Instruction complements all the bits in the accumulator (1==>0, 0==>1).
Syntax: CPL A

STATUS register flags: No flags are affected.

EXAMPLE:

0322
0323
0324

Before execution: A= (00110110)
After execution: A= (11001001)

CPL bit - Complements the direct bit

Bit: any bit of RAM

Description: Instruction complements the specified bit of RAM (0=>1, 1=>0).
Syntax: CPL [bit address]

STATUS register flags: No flags are affected

EXAMPLE:

Before execution: P0.3=1 (input pin)
After execution: P0.3=0 (output pin)

CPL C - Complements the carry flag

C: Carry flag

Description: Instruction complements the carry flag (0==>1, 1==>0).
Syntax: CPL C

STATUS register flags: C

EXAMPLE:

Before execution: C=1
After execution: C=0

DA A - Decimal adjust accumulator

A: accumulator

Description: Instruction adjusts the contents of the accumulator to correspond to a BCD number
after two BCD numbers have been added by the ADD and ADDC instructions. The result in
form of two 4-digit BCD numbers is stored in the accumulator.

Syntax: DA A

STATUS register flags: C

EXAMPLE:

0322
0323 A, B
0324 DA A

Before execution: A=56h (01010110) 56 BCD

B=67h (01100111) 67BCD

After execution: A=BDh (10111101)

After BCD conversion: A=23h (00100011), C=1 (Overflow) (C+23=123) = 56+67

DEC A - Decrements the accumulator by 1

Description: Instruction decrements the value in the accumulator by 1. If there is a 0 in the
accumulator, the result of the operation is FFh. (255 dec.)

Syntax: DEC A

STATUS register flags: No flags are affected

EXAMPLE:

o322
o323
0324

Before execution: A=E4h
After execution: A=E3h

DEC Rn - Decrements the register Rn by 1

Description: Instruction decrements the value in the Rn register by 1. If there is a 0 in the
register, the result of the operation will be FFh. (255 dec.)

Syntax: DEC Rn

STATUS register flags: No flags are affected

EXAMPLE:

0322
0323
0324

Before execution: R3=B0h
After execution: R3=AFh

DEC direct - Decrements the direct byte by 1

Direct: arbitrary register with address 0-255 (0-FFh)

Description: Instruction decrements the value of directly addressed register by 1. As it is direct
addressing, the register must be within the first 255 locations of RAM. If there is a 0 in the
register, the result will be FFh.

Syntax: DEC [register address]

STATUS register flags: No flags are affected

EXAMPLE:

0322
0323
0324

Before execution: CNT=0
After execution: CNT=FFh

DIV AB - Divides the accumulator by the register B

A: accumulator, B: Register B

Description: Instruction divides the value in the accumulator by the value in the B register. After
division the integer part of result is stored in the accumulator while the register contains the
remainder. In case of dividing by 1, the flag OV is set and the result of division is unpredictable.
The 8-bit quotient is stored in the accumulator and the 8-bit remainder is stored in the B register.
Syntax: DIV AB

STATUS register flags: C, OV

EXAMPLE:

0222
0223
0224

Before execution: A=FBh (251dec.) B=12h (18 dec.)
After execution: A=0Dh (13dec.) B=11h (17dec.) 13-18 + 17 =251

DEC @Ri - Decrements the indirect RAM by 1

Ri: Register RO or R1

Description: This instruction decrements the value in the indirectly addressed register of RAM
by 1. The register address is stored in the Ri register (RO or R1). If there is a 0 in the register, the
result will be FFh.

Syntax: DEC @Ri

STATUS register flags: No flags are affected

EXAMPLE:

0222
0223
0224

Register Address CNT = 4Fh RO=4Fh
Before execution: CNT=35h
After execution: CNT= 34h

DIJNZ direct,rel - Decrements direct byte by 1 and jumps if not 0

Direct: arbitrary register with address 0-255 (0-FFh), addr: Jump address.

Description: This instruction first decrements value in the register. If the result is 0, the program
proceeds with execution. Otherwise, a jump to the specified address in the program will be
executed. As it is direct addressing, the register must be within the first 255 locations of RAM.
This is a short jump instruction, which means that the address of a new location must be
relatively near the current one (-128 to +127 locations relative to the first following instruction).
Syntax: DINZ direct,[jump address]

STATUS register flags: No flags are affected

EXAMPLE:

———
H

"
[
CNT, LABEI.1
H
"

Before execution: PC=0445h
After execution: If CNT#0: PC=0423h
If CNT=0: PC=0446h

DJNZ Rn,rel - Decrements the Rn register by 1 and jumps if not 0

Rn: any R register (R0-R7), addr: jump address

Description: This instruction first decrements the value in the Rn register. If the result is 0, the
program proceeds with execution. Otherwise, a jump to the specified address in the program will
be executed. This is a short jump instruction, which means that the address of a new location
must be relatively near the current one (- 128 to +127 locations relative to the first following
instruction).

Syntax: DJINZ Rn, [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

0445 (Label)
0446

Before execution: PC=0445h
After execution: If R1#0: PC=0423h
If R1=0: PC=0446h

INC Rn - Increments the Rn register by 1

Rn: any R register (R0-R7)

Description: Instruction increments the value in the Rn register by 1. If the register includes the
number 255, the result of the operation will be 0.

Syntax: INC Rn

STATUS register flags: No flags are affected

EXAMPLE:

0322
0323 INC
0324

Before execution: R4=18h
After execution: R4=19h

INC A - Increments the accumulator by 1

A: accumulator

Description: This instruction increments the value in the accumulator by 1. If the accumulator
includes the number 255, the result of the operation will be 0.

Syntax: INC A

STATUS register flags: No flags are affected

EXAMPLE:

Before execution: A=E4h
After execution: A=E5h

INC @R - Increments the value of indirectly addressed register of RAM by 1

Ri: Register RO or R1

Description: This instruction increments the value in the directly addressed register of RAM by
1. The register address is stored in the Ri Register (RO or R1). If register includes the number
255, the result of the operation will be 0.

Syntax: INC @Ri

STATUS register flags: No flags are affected

EXAMPLE:

(Label)

Register Address CNT = 4Fh
Before execution: CNT=35h R1=4Fh
After execution: CNT=36h

INC direct - Increments the direct byte by 1

Direct: arbitrary register with address 0-255 (0-FFh)

Description: Instruction increments the direct byte by 1. If the register includes the number 255,
the result of the operation will be 0. As it is direct addressing, the register must be within the first
255 RAM locations.

Syntax: INC direct

STATUS register flags: No flags are affected

EXAMPLE:

Before execution: CNT=33h
After execution: CNT=34h

JB bit,rel - Jump if direct bit is set

addr: Jump address, Bit: any bit of RAM

Description: If the bit is set, a jump to the specified address will be executed. Otherwise, if the
value of bit is 0, the program proceeds with the next instruction. This is a short jump instruction,
which means that the address of a new location must be relatively near the current one (-128 to +
127 locations relative to the first following instruction).

Syntax: JB bit, [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

(Label) PO.5, PUSH BUTTON

0345 PUSH BUTTON
0346

Before execution: PC=0323h
After execution: If P0.5=0;: PC=0324h
If PO.5=1: PC=0345h

INC DPTR - Increments the Data Pointer by 1

DPTR: Data Pointer

Description: Instruction increments the value of the 16-bit data pointer by 1. This is the only 16-
bit register upon which this operation can be performed.

Syntax: INC DPTR

STATUS register flags: No flags are affected

EXAMPLE:

0222
0223
0224

Before execution: DPTR = 13FF (DPH = 13h DPL = FFh)
After execution: DPTR = 1400 (DPH = 14h DPL = 0)

JC rel - Jump if carry flag is set

addr: Jump address

Description: Instruction first checks if the carry flag is set. If set, a jump to the specified address
is executed. Otherwise, the program proceeds with the next instruction. This is a short jump
instruction, which means that the address of a new location must be relatively near the current
one (-129 to + 127 locations relative to the first following instruction).

Syntax: JC [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

(Label) JC

Before instruction: PC=0323h
After instruction: If C=0: PC=0324h
If C=1: PC=0345h

JBC bit,rel - Jump if direct bit is set

Bit: any bit of RAM, addr: Jump Address

Description: This instruction first checks if the bit is set. If set, a jump to the specified address is
executed and the bit is cleared. Otherwise, the program proceeds with the first following
instruction. This is a short jump instruction, which means that the address of a new location must
be relatively near the current one (-129 to + 127 locations relative to the first following
instruction).

Syntax: JBC bit, [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

(Label) TESTO0.4, JUMP33

JUMP33

Before execution: PC=0323h
After execution: If TEST0.4=1: PC=0345h, TEST0.4=0
If TEST0.4=0: PC=0324h, TESTO0,4=0

JNB bit,rel - Jump if direct bit is not set

addr: Jump address, Bit: any bit of RAM

Description: If the bit is cleared, a jump to the specified address will be executed. Otherwise, if
the bit value is 1, the program proceeds with the first following instruction. This is a short jump
instruction, which means that the address of a new location must be relatively near the current
one (-129 to + 127 locations relative to the first following instruction).

Syntax: JNB bit,[jump address]

Bytes: 3 (instruction code, bit address, jump address)

STATUS register flags: No flags are affected

EXAMPLE:

(Label) FP0O.5, PUSH BUTTON

PUSH BUTTON

Before execution: PC=0323h

After execution: If P0.5=1: PC=0324h

If P0.5=0: PC=0345h

JMP @A-+DPTR - Jump indirect relative to the DPTR

A: accumulator, DPTR: Data Pointer

Description: This instruction causes a jump to the address calculated by adding value stored in
the accumulator to the 16-bit number in the DPTR Register. It is used with complex program
branching where the accumulator affects jump address, for example when reading a table.
Neither accumulator nor DPTR register are affected.

Syntax: JMP @A+DPTR

STATUS register flags: No flags are affected

EXAMPLE:

LABELS3

Before execution: PC=223 DPTR=1400h

After execution: PC = 1402h if A=2

PC = 1404h if A=4

PC = 1406h if A=6

Note: As instructions AJMP LABELS occupy two locations each, the values in the accumulator
specifying them must be different from each other by 2.

JNZ rel - Jump if accumulator is not zero

addr: Jump Address

Description: This instruction checks if the value stored in the accumulator is 0. If not, a jump to
the specified address will be executed. Otherwise, the program proceeds with the first following
instruction. This is a short jump instruction, which means that the address of a new location must
be relatively near the current one (-129 to + 127 locations relative to the first following
instruction).

Syntax: JNZ [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

(Label)

Before execution: PC=0323h
After execution: If A=0: PC=324h
If A#0: PC=283h

JNC rel - Jump if carry flag is not set

addr: Jump Address

Description: This instruction first checks whether the carry flag is set. If not, a jump to the
specified address will be executed. Otherwise, the program proceeds with the first following
instruction. This is a short jump instruction, which means that the address of a new location must
be relatively near the current one (-129 to + 127 locations relative to the first following
instruction).

Syntax: JNC [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

0360 LAB4

Before execution: PC=0323h
After execution: If C=0: PC=360h
If C=1: PC=324h

LCALL addr16 - Long subroutine call

addr16: Subroutine Address

Description: This instruction unconditionally calls a subroutine located at the specified address.
The current address and the start of the subroutine called can be located anywhere within the
memory space of 64K.

Syntax: LCALL [subroutine name]

STATUS register flags: No flags are affected

EXAMPLE:

(Label) LCALL SUBRTN 0124

1234 SUBRTN

Before execution: PC=0123h
After execution: PC=1234h

JZ rel - Jump if accumulator is zero

addr: Jump Address

Description: The instruction checks whether the value stored in the accumulator is 0. If yes, a
jump to the specified address will be executed. Otherwise, the program proceeds with the
following instruction. This is a short jump instruction, which means that the address of a
new location must be relatively near the current one (-129 to + 127 locations relative to the first
following instruction).

Syntax: JZ [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

(Label)

Before execution: PC=0323h
After execution: If AO: PC=324h
If A=0: PC=283h

MOV A,Rn - Moves the Rn register to the accumulator

Rn: any R register (R0-R7), A: accumulator

Description: The instruction moves the Rn register to the accumulator. The Rn register is not
affected.

Syntax: MOV A,Rn

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label) MOV A,R3
0125

Before execution: R3=58h
After execution: R3=58h A=58h

LIJMP addr16 - Long jump

addr16: jump address

Description: Instruction causes a jump to the specified 16-bit address.
Syntax: LIMP [jump address]

STATUS register flags: No flags are affected

EXAMPLE:

(Label) LIMP JUMP33

hssmssnamnnn

|

Before execution: PC=0123h
After execution: PC=1234h

MOV A,@Ri - Moves the indirect RAM to the accumulator
Ri: Register RO or R1, A: accumulator

Description: Instruction moves the indirectly addressed register of RAM to the accumulator. The
register address is stored in the Ri register (RO or R1). The result is stored in the accumulator.
The register is not affected.

Syntax: MOV A,@Ri
STATUS register flags: No flags are affected
EXAMPLE:

0123
0124 (Label)
0125

Register Address SUM=F2h RO0=F2h
Before execution: SUM=58h
After execution: A=58h SUM=58h

MOV A direct - Moves the direct byte to the accumulator

Direct: arbitrary register with address 0-255 (0-FFh), A: accumulator

Description: Instruction moves the direct byte to the accumulator. As it is direct addressing, the
register can be any SFRs or general-purpose register with address 0-7Fh. (0-127 dec.). After
executing the instruction, the register is not affected.

Syntax: MOV A, direct

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124
0125

Before execution: Rx=68h
After execution: Rx=68h A=68h

MOV Rn,A - Moves the accumulator to the Rn register

Rn: any R register (R0-R7), A: accumulator

Description: Instruction moves the accumulator to the Rn register. The accumulator is not
affected.

Syntax: MOV Rn,A

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label)
0125

Before execution: A=58h
After execution: R3=58h A=58h

MOV A #data - Moves the immediate data to the accumulator

A: accumulator

Data: Constant in the range of 0-255 (0-FFh)

Desription: Instruction moves the immediate data to the accumulator.
Syntax: MOV A #data;

STATUS register flags: No flags are affected;

EXAMPLE:

0123
0124 (Label) MOV A,#28
0125

After execution: A=28h

MOV Rn,#data - Moves the immediate data to the Rn register

Rn: any R register (R0-R7) Data: Constant in the range of 0-255 (0-FFh)
Description: Instruction moves the immediate data to the Rn register.
Syntax: MOV Rn,#data

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label) MOV R5, #32
0125

After execution: R5=32h

MOV Rn,direct - Moves the direct byte to the Rn register

Rn: Any R registar (R0-R7), Direct: arbitrary register with address 0-255 (0-FFh)
Description: Instruction moves the direct byte to the Rn register. As it is direct addressing, the
register can be any SFRs or general-purpose register with address 0-7Fh. (0-127 dec.). After
executing the instruction, the register is not affected.

Syntax: MOV Rn,direct

STATUS register flags: No flags are affected

EXAMPLE:

(Label) MOV R3,SUM

Before execution: SUM=58h
After execution: SUM=58h R3=58h

MOV direct,Rn - Moves the Rn register to the direct byte

Rn: any R register (R0-R7), Direct: arbitrary register with address 0-255(0-FFh)

Description: Instruction moves the Rn register to the direct byte. As it is direct addressing, the
register can be any SFRs or general-purpose register with address 0-7Fh. (0-127 dec.). After
executing the instruction, the register is not affected.

Syntax: MOV direct,Rn

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label) MOV CIF, R3
0125

Before execution: R3=18h
After execution: R3=18h CIF=1&8h

MOV direct,A - Moves the accumulator to the direct byte
Direct: arbitrary register with address 0-255 (0 - FFh), A: accumulator

Description: Instruction moves the accumulator to the direct byte. As it is direct
addressing, the register can be any SFRs or general-purpose register with address
0-7Fh. (0-127 dec.). After executing the instruction, the register is not affected.
Syntax: MOV direct,A

STATUS register flags: No flags are affected

EXAMPLE:

0723
0724 (Label)
0725

Before execution: A=98h
After execution: A=98h REG=98h

MOV direct,@Ri - Moves the indirect RAM to the direct byte

Direct: arbitrary register with address 0-255 (0 - FFh), Ri: Register RO or R1

Description: Instruction moves the indirectly adressed register of RAM to the direct byte. The
register is not affected.

Syntax: MOV direct,@Ri

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label)
0125

Register Address SUM=F3
Before execution: SUM=58h R1=F3
After execution: SUM=58h TEMP=58h

MOV directl,direct2 - Moves the direct byte to the direct byte

Direct: Arbitrary register with address 0-255 (0-FFh), Direct: Arbitrary register with address 0-
255 (0-FFh)

Description: Instruction moves the direct byte to another direct byte. As it is direct addressing,
both registers can be any SFRs or general-purpose registers with address 0-7Fh. (0-127 dec.).
The directl is not affected.

Syntax: MOV directl,direct2

STATUS register flags: No flags are affected.

EXAMPLE:

0223
0224 (Label) SUM, TEMP
0225

Before execution: TEMP=58h
After execution: TEMP=58h SUM=58h

MOV @R1i,A - Moves the accumulator to the indirect RAM

A: accumulator, Ri: register RO or R1

Description: Instruction moves the accumulator to the indirectly addressed register of RAM. The
register address is stored in the Ri register (RO or R1). After executing the instruction, the
accumulator is not affected.

Syntax: MOV @Ri,A

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label) MOV @RO, A
0125

Register Address SUM=F2h
Before execution: RO=F2h A=58h
After execution: SUM=58h A=58h

MOV direct,#data - Moves the immediate data to the direct byte

Direct: Arbitrary register with address 0-255 (0-FFh), Data: Constant in the range of 0-255 (0-
FFh)

Description: Instruction moves the immediate data to the direct byte. As it is direct addressing,
the direct byte can be any SFRs or general-purpose register with address 0-7Fh. (0-127 dec.).
Syntax: MOV direct,#data

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 TEMP, #22
0125

After execution;: TEMP=22h

MOV @Ri,#data - Moves the immediate data to the indirect RAM

Ri: Register RO or R1, Data: Constant in the range of 0-255 (0-FFh)

Description: Instruction moves the immediate data to the idirectly addressed register of RAM.
The register address is stored in the Ri register (RO or R1).

Syntax: MOV @Ri,#data

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label) MOV @R1, #44
0125

Register address TEMP=E2h
Before execution: R1=E2h
After execution: TEMP=44h

MOV @Ri,direct - Moves the direct byte to the indirect RAM

Direct: Arbitrary register with address 0-255 (0-FFh), Ri: Register RO or R1

Description: Instruction moves the direct byte to a register the address of which is stored in the
Ri register (RO or R1). After executing the instruction, the direct byte is not affected.

Syntax: MOV @Ri,direct

STATUS register flags: No flags are affected

EXAMPLE:

@R1, ZBIR

Register address TEMP=E2h
Before execution: SUM=58h R1=E2h
After execution: SUM=58h TEMP=58h

MOV bit,C - Moves the carry flag to the direct bit

C: Carry flag, Bit: any bit of RAM

Description: Instruction moves the carry flag to the direct bit. After executing the instruction, the
carry flag is not affected.

Syntax: MOV bit,C

STATUS register flags: No flags are affected

EXAMPLE:

0123
0124 (Label) MOV P1.2,C
0125

After execution: If C=0 P1.2=0
IfC=1P1.2=1

MOV C,bit - Moves the direct bit to the carry flag

C: Carry flag, Bit: any bit of RAM

Description: Instruction moves the direct bit to the carry flag. After executing the instruction, the
bit is not affected.

Syntax: MOV C,bit

STATUS register flags: C

EXAMPLE:

0123
0124 (Label) MOV
0125

After execution: If P1.4=0 C=0
IfP1.4=1 C=1

MOVC A,@A+DPTR - Moves the code byte relative to the DPTR to the accumulator

A: accumulator, DPTR: Data Pointer

Description: Instruction first adds the 16-bit DPTR register to the accumulator. The result of
addition is then used as a memory address from which the 8-bit data is moved to the
accumulator.

Syntax: MOVC A,@A+DPTR

STATUS register flags: No flags affected

EXAMPLE:

MOVC A, @A+DPTR

1100 66h
1101 7T 7h
1102 88h
1103 i S9h

Before execution:

DPTR=1000:

A=0

A=1

A=2

A=3

After execution:

A=66h

A=77h

A=88h

A=9%h

Note: DB (Define Byte) is a directive in assembly language used to define constant.

MOV DPTR #datal6 - Loads the data pointer with a 16-bit constant

Data: constant in the range of 0-65535 (0-FFFFh), DPTR: Data Pointer

Description: Instruction stores a 16-bit constant to the DPTR register. The 8 high bits of the
constant are stored in the DPH register, while the 8 low bits are stored in the DPL register.
Syntax: MOV DPTR #data

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Labela) MOV DPTR, #1234
0125

After execution: DPH=12h DPL=34h

MOVX A,@Ri - Moves the external RAM (8-bit address) to the accumulator

Ri: register RO or R1, A: accumulator

Description: Instruction reads the content of a register in external RAM and moves it to the
accumulator. The register address is stored in the Ri register (RO or R1).

Syntax: MOVX A,@Ri

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Labela) MOVX A, @RO
0125

Register Address: SUM=12h

Before execution: SUM=58h R0=12h

After execution: A=58h

Note: SUM Register is stored in external RAM which is 256 bytes in size.

MOVC A,@A+PC - Moves the code byte relative to the PC to the accumulator
A: accumulator, PC: Program Counter
Description: Instruction first adds the 16-bit PC register to the accumulator (the current program
address is stored in the PC register). The result of addition is then used as a memory address
from which the 8-bit data is moved to the accumulator.
Syntax: MOVC A,@A+PC
STATUS register flags: No flags affected
EXAMPLE:
0100 (Tabela) INC N
0101 MOWC A, RA+PC
0102
0103 ceh
0104 T 7h

0105 88h
0106 99h

After the subroutine "Table" has been executed, one of four values is stored in the accumulator:
Before execution:
A=0

A=1

A=2

A=3

After execution:
A=66h

A=77h

A=88h

A=99h

Note: DB (Define Byte) is a directive in assembly language used to define constant.

MOVX @R1i,A - Moves the accumulator to the external RAM (8-bit address)
Ri: register RO or R1, A: accumulator

Description: Instruction moves the accumulator to a register stored in external RAM. Its address
is stored in the Ri register.

Syntax: MOVX @Ri,A

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) MOWVX ER1, A
0125

Register address: SUM=34h

Before execution: A=58 R1=34h

After execution: SUM=58h

NOTE:

Register SUM is located in external RAM which is 256 bytes in size.

MOVX A,@DPTR - Moves the external memory (16-bit address) to the accumulator
A: accumulator, DPRTR: Data Pointer

Description: Instruction moves the content of a register in external memory to the accumulator.
The 16-bit address of the register is stored in the DPTR register (DPH and DPL).
Syntax: MOVX A,@DPTR

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) MOVX A,@DPTR
0125

Register address: SUM=1234h

Before execution: DPTR=1234h SUM=58

After execution: A=58h

Note: Register SUM is located in external RAM which is up to 64K in size.

MUL AB - Multiplies A and B
A: accumulator, B: Register B

Description: Instruction multiplies the value in the accumulator with the value in the B register.
The low-order byte of the 16-bit result is stored in the accumulator, while the high byte remains
in the B register. If the result is larger than 255, the overflow flag is set. The carry flag is not
affected.

Syntax: MUL AB

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) MUL AB
0125

Before execution: A=80 (50h) B=160 (AOh)
After execution: A=0 B=32h
A-B=80-160=12800 (3200h)

MOVX @DPTR,A - Moves the accumulator to the external RAM (16-bit address)

A: accumulator, DPTR: Data Pointer

Description: Instruction moves the accumulator to a register stored in external RAM. The 16-bit
address of the register is stored in the DPTR register (DPH and DPL).

Syntax: MOVX @DPTR,A

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Labela) MOVX @DPTR, A
0125

Register address: SUM=1234h

Before execution: A=58 DPTR=1234h

After execution: SUM=58h

Note: Register SUM is located in RAM which is up to 64K in size.

ORL A,Rn - OR register to the accumulator

Rn: any R register (R0-R7), A: accumulator

Description: Instruction performs logic OR operation between the accumulator and Rn register.
The result is stored in the accumulator.

Syntax: ORL A,Rn;

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) ORL A,R5
0125

Before execution: A= C3h (11000011 Bin.)
R5=55h (01010101 Bin.)
After execution: A=D7h (11010111 Bin.)

NOP - No operation

Description: Instruction doesn’t perform any operation and is used when additional time delays
are needed.

Syntax: NOP

STATUS register flags: No flags affected

EXAMPLE:

0123

0124 (Label) CLR

0125 NOP

0126 NOP

0127 NOP

0128 NOP

0129 SETB 22 - 3

Such a sequence provides a negative pulse which lasts exactly 5 machine cycles on the P2.3. If a
12 MHz quartz crystal is used then 1 cycle lasts 1uS, which means that this output will be a low-

going output pulse for 5 uS.

ORL A,@Ri - OR indirect RAM to the accumulator

Ri: register RO or R1, A: accumulator

Description: Instruction performs logic OR operation between the accumulator and a register. As
it is indirect addressing, the register address is stored in the Ri register (RO or R1). The result is
stored in the accumulator.

Syntax: ANL A,@Ri

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) ORL
0125

Register address: TEMP=FAh

Before execution: R1=FAh

TEMP= C2h (11000010 Bin.)

A=54h (01010100 Bin.)

After execution: A=D6h (11010110 Bin.)

ORL A, direct - OR direct byte to the accumulator

Direct: arbitrary register with address 0-255 (0-FFh), A: accumulator

Description: Instruction performs logic OR operation between the accumulator and a register. As
it is direct addressing, the register can be any SFRs or general-purpose register with address 0-
7Fh (0-127 dec.). The result is stored in the accumulator.

Syntax: ORL A,direct

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) ORL A, LOG
0125

Before execution: A= C2h (11000010 Bin.)
LOG=54h (01010100 Bin.)
After execution: A=D6h (11010110 Bin.)

ORL direct,A - OR accumulator to the direct byte
Direct: arbitrary register with address 0-255 (0-FFh), A: accumulator
Description: Instruction performs logic OR operation between a register and accumulator. As it

is direct addressing, the register can be any SFRs or general- purpose register with address 0-7Fh
(0-127 dec.). The result is stored in the register.

Syntax: ORL [register address], A

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) ORL TEMP,A
0125

Before execution: TEMP= C2h (11000010 Bin.)
A=54h (01010100 Bin.)
After execution: A=D6h (11010110 Bin.)

ORL A, #data - OR immediate data to the accumulator

Data: constant in the range of 0-255 (0-FFh), A: accumulator

Description: Instruction performs logic OR operation between the accumulator and the
immediate data. The result is stored in the accumulator.

Syntax: ORL A, #data

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) ORL
0125

Before execution: A= C2h (11000010 Bin.)
After execution: A= C3h (11000011 Bin.)

ORL C,bit - OR direct bit to the carry flag

C: Carry flag, Bit: any bit of RAM

Description: Instruction performs logic OR operation between the direct bit and the carry flag.
The result is stored in the carry flag.

Syntax: ORL C,bit

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) ORL C,ACC.3
0125

Before execution: ACC= C6h (11001010 Bin.) C=0
After execution: C=1

ORL direct,#data - OR immediate data to direct byte

Direct: arbitrary register with address 0-255 (0-FFh), Data: constant in the range of 0-255 (0-
FFh)

Description: Instruction performs logic OR operation between the immediate data and the direct
byte. As it is direct addressing, the direct byte can be any SFRs or general-purpose register with
address 0-7Fh (0-127 dec.). The result is stored in the direct byte.

Syntax: ORL [register address],#data

STATUS register flags: No flags affected

EXAMPLE:

0123
0124 (Label) ORL TEMP, #12
0125

Before execution: TEMP= C2h (11000010 Bin.)
After execution: A= D2h (11010010 Bin.)

POP direct - Pop the direct byte from the stack
Direct: arbitrary register with address 0-255 (0-FFh)

Description: Instruction first reads data from the location being pointed to by the Stack. The data
is then copied to the direct byte and the value of the Stack Pointer is decremented by 1. As it is
direct addressing, the direct byte can be any SFRs or general-purpose register with address 0-
7Fh. (0-127 dec.).

Syntax: POP direct;

Bytes: 2 (instruction code, direct byte address);

STATUS register flags: No flags affected;

EXAMPLE:

0123
0124
0125

Before execution: Address Value
030h 20h

031h 23h

SP==>032h 01h

DPTR=0123h (DPH=01, DPL=23h)
After execution: Address Value
SP==> 030h 20h

031h 23h

032h O01h

ORL C,/bit - OR complements of direct bit to the carry flag

C: carry flag

Bit: any bit of RAM

Description: Instruction performs logic OR operation between the addressed inverted bit and the
carry flag. The result is stored in the carry flag.

BIT C C AND BIT
1 0 0

1 1

0

0

Syntax: ORL C,/bit;
Bytes: 2 (instruction code, bit address);
STATUS register flags: No flags affected;

EXAMPLE:

0123
0124 (Label) ORL C,ACC.3
0125

Before execution: ACC= C6h (11001010 Bin.)

C=0

After execution: C=0

RET - Return from subroutine

Description: This instruction ends every subroutine. After execution, the program proceeds with
the instruction following an ACALL or LCALL.

Syntax: RET;

Byte: 1 (instruction code);

STATUS register flags: No flags affected;

EXAMPLE:

Instruction ACAIL.I. is called-
by subroutine IMPUL. S._

Subroutine PULSE is ended
with instruction RET..

PUSH direct - Pushes the direct byte onto the stack

Data: Arbitrary register with address 0-255 (0-FFh)

Description: Address currently pointed to by the Stack Pointer is first incremented by 1 and
afterwards the data from the register Rx is copied to it. As it is direct addressing, the direct byte
can be any SFRs or general-purpose register with address 0-7Fh. (0-127 dec.)

Syntax: PUSH direct;

Bytes: 2 (instruction code, direct byte address);

STATUS register flags: No flags affected;

EXAMPLE:

(Label)

Before execution: Address Value

SP==> (030h 20h

DPTR=0123h (DPH=01, DPL=23h)

After execution: Address Value

030h 20h

031h 23h

SP==>032h 01h

RL A - Rotates the accumulator one bit left
A: accumulator

Description: Eight bits in the accumulator are rotated one bit left, so that the bit 7 is rotated into
the bit 0 position.

Syntax: RL A;

Byte: 1 (instruction code);

STATUS register flags: No flags affected;
EXAMPLE:

0123
0124 (Label) RL A
0125

Before execution: A= C2h (11000010 Bin.)
After execution: A=85h (10000101 Bin.)

r—— LiltjoJoJoJofJifo]—=

RETI - Return from interrupt

Description: This instruction ends every interrupt routine and informs processor about it. After
executing the instruction, the program proceeds from where it left off. The PSW is not
automatically returned its pre-interrupt status.

Syntax: RETI;

Byte: 1 (instruction code);

STATUS register flags: No flags affected;

RR A - Rotates the accumulator one bit right

A: accumulator

Description: All eight bits in the accumulator are rotated one bit right so that the bit 0 is rotated
into the bit 7 position.

Syntax: RR A;

Byte: 1 (instruction code);

STATUS register flags: No flags affected;
EXAMPLE:

0123
0124 (Label) RR
0125

Before execution: A= C2h (11000010 Bin.)
After execution: A= 61h (01100001 Bin.)

|—>I1I1I0I0I0I0I1I0I—

RLC A - Rotates the accumulator one bit left through the carry flag

A: accumulator

Description: All eight bits in the accumulator and carry flag are rotated one bit left. After this
operation, the bit 7 is rotated into the carry flag position and the carry flag is rotated into the bit 0
position.

Syntax: RLC A;

Byte: 1 (instruction code);

STATUS register flags: C;

EXAMPLE:

0123
0124 (Label)
0125

Before execution: A= C2h (11000010 Bin.)
C=0

After execution: A= 85h (10000100 Bin.)
C=1

— Lol I1I1I0I0I0I0I1I0I<—]

SETB C - Sets the carry flag

C: Carry flag

Description: Instruction sets the carry flag.
Syntax: SETB C;

Byte: 1 (instruction code);

STATUS register flags: C;

EXAMPLE:

0123
0124 (Label) SETB
0125

After execution: C=1

RRC A - Rotates the accumulator one bit right through the carry flag

A: accumulator

Description: All eight bits in the accumulator and carry flag are rotated one bit right. After this
operation, the carry flag is rotated into the bit 7 position and the bit 0 is rotated into the carry flag
position.

Syntax: RRC A;

Byte: 1 (instruction code);

STATUS register flags: C;

EXAMPLE:

0123
0124
0125

Before execution: A= C2h (11000010 Bin.)
C=0

After execution: A= 61h (01100001 Bin.)
C=0

— o] [1[1]ofoJofof1]oO]|—

SIMP rel - Short Jump (relative address)

addr: Jump Address

Description: Instruction enables jump to the new address which should be in the range of -128 to
+127 locations relative to the first following instruction.

Syntax: SIMP [jump address];

Bytes: 2 (instruction code, jump value);

STATUS register flags: No flags are affected;

EXAMPLE:

(Label) SJMP PUSH BUT'®=3S

0345 PUSH BUTTON

Before execution: PC=323
After execution: PC=345

SETB bit - Sets the direct bit

Bit: any bit of RAM

Description: Instruction sets the specified bit. The register containing that bit must belong to the
group of the so called bit addressable registers.

Syntax: SETB [bit address];

Bytes: 2 (instruction code, bit address);

STATUS register flags: No flags affected;

EXAMPLE:

(Label) SETB P1.0

Before execution: P0.1 = 34h (00110100)
pin 1 is configured as an output

After execution: P0.1 =35h (00110101)
pin 1 is configured as an input

SUBB A,direct - Subtracts the direct byte from the accumulator with a borrow

Direct: arbitrary register with address 0-255 (0-FFh)

A: accumulator

Description: Instruction subtracts the direct byte from the accumulator with a borrow. If the
higher bit is subtracted from the lower bit then the carry flag is set. As it is direct addressing, the
direct byte can be any SFRs or general-purpose register with address 0-7Fh. (0-127 dec.). The
result is stored in the accumulator.

Syntax: SUBB A, direct;

Bytes: 2 (instruction code, direct byte address);

STATUS register flags: C, OV, AC;

EXAMPLE:

0322
0323 (Label) SUBB A,DIF
0324

Before execution: A=C9h, DIF=53h, C=0
After execution: A=76h, C=0

SUBB A,Rn - Subtracts the Rn register from the accumulator with a borrow

Rn: any R register (R0-R7)

A: accumulator

Description: Instruction subtracts the Rn register from the accumulator with a borrow. If the
higher bit is subtracted from the lower bit then the carry flag is set. The result is stored in the
accumulator.

Syntax: SUBB A,Rn;

Byte: 1 (instruction code);

STATUS register flags: C, OV, AC;

EXAMPLE:

(Label) SUBB

Before execution: A=C9h, R4=54h, C=1

After execution: A=74h, C=0

Note:

The result is different (C9 - 54=75) because the carry flag is set (C=1) before the instruction
starts execution.

SUBB A,#data - Subtracts the immediate data from the accumulator with a borrow

A: accumulator

Data: constant in the range of 0-255 (0-FFh)

Description: Instruction subtracts the immediate data from the accumulator with a borrow. If the
higher bit is subtracted from the lower bit then the carry flag is set. The result is stored in the
accumulator.

Syntax: SUBB A, #data;

Bytes: 2 (instruction code, data);

STATUS register flags: C, OV, AC;

EXAMPLE:

0322
0323 (Label) SUBB A, H#22
0324

Before execution: A=C9%h, C=0
After execution: A=A7h, C=0

SUBB A,@Ri - Subtracts the indirect RAM from the accumulator with a borrow

Ri: register RO or R1

A: accumulator

Description: Instruction subtracts the indirectly addressed register of RAM from the accumulator
with a borrow. If the higher bit is subtracted from the lower bit then the carry flag is set. As it is
indirect addressing, the register address is stored in the Ri register (RO or R1). The result is
stored in the accumulator.

Syntax: SUBB A,@Ri;

Byte: 1 (instruction code);

STATUS register flags: C, OV, AC;

EXAMPLE:

(Label) SUBB

Register address: MIN=F4
Before execution: A=C9h, R1=F4h, MIN=04, C=0
After execution: A=C5h, C=0

XCH A,Rn - Exchanges the Rn register with the accumulator

Rn: any R register (R0-R7)

A: accumulator

Description: Instruction causes the accumulator and Rn register to exchange data. The content of
the accumulator is moved to the Rn register and vice versa.

Syntax: XCH A,Rn;

Byte: 1 (instruction code);

STATUS register flags: No flags are affected;

EXAMPLE:

0322
0323 (Labela) XCH A,R3
0324

Before execution: A=C6h, R3=29h
After execution: R3=C6h, A=2%h

SWAP A - Swaps nibbles within the accumulator

A: accumulator

Description: A nibble refers to a group of 4 bits within one register (bit0-bit3 and bit4-bit7). This
instruction interchanges high and low nibbles of the accumulator.

Syntax: SWAP A;

Byte: 1 (instruction code);

STATUS register flags: No flags are affected;

EXAMPLE:

0322
0323 (Label) SWAP B
0324

Before execution: A=E1h (11100001)bin.
After execution: A=1Eh (00011110)bin.

XCH A,@Ri - Exchanges the indirect RAM with the accumulator

Ri: register RO or R1

A: accumulator

Description: Instruction moves the contents of accumulator to the indirectly addressed register of
RAM and vice versa. As it is indirect addressing, the register address is stored in the register Ri
(RO or R1).

Syntax: XCH A,@Rj;

Byte: 1 (instruction code);

STATUS register flags: No flags are affected;

EXAMPLE:

0322
0323 (Label)
0324

Register address: SUM=E3
Before execution: RO=E3, SUM=29h, A=98h
After execution: A=29h, SUM=98h

XCH A,direct - Exchanges the direct byte with the accumulator

Direct: arbitrary register with address 0-255 (0-FFh)

A: accumulator

Description: Instruction moves the contents of the accumulator into the direct byte and vice
versa. As it is direct addressing, the direct byte can be any SFRs or general-purpose register with
address 0-7Fh (0-127 dec.).

Syntax: XCH A,direct;

Bytes: 2 (instruction code, direct byte address);

STATUS register flags: No flags are affected;

EXAMPLE:

0322
0323 (Label) XCH A, SUM
0324

Before execution: A=FFh, SUM=29h
After execution: SUM=FFh A=29h

XRL A,Rn - Exclusive OR register to accumulator
Rn: any R register (R0-R7)
A: accumulator

Description: Instruction performs exclusive OR operation between the accumulator and the Rn

register. The result is stored in the accumulator.
Syntax: XRL A,Rn;

Byte: 1 (instruction code);

STATUS register flags: No flags are affected;
EXAMPLE:

0123
0124
0125

(Label) XRL

Before execution: A= C3h (11000011 Bin.)
R3=55h (01010101 Bin.)
After execution: A= 96h (10010110 Bin.)

A,R3

XCHD A,@Ri - Exchanges the low-order nibble indirect RAM with the accumulator

Ri: register RO or R1
A: accumulator

Description: This instruction interchanges the low-

order nibbles (bits 0-3) of the accumulator

with the low-order nibbles of the indirectly addressed register of RAM. High-order nibbles of the
accumulator and register are not affected. This instruction is mainly used when operating with
BCD values. As it is indirect addressing, the register address is stored in the register Ri (RO or

R1).

Syntax: XCHD A,@Ri;

Byte: 1 (instruction code);

STATUS register flags: No flags are affected;
EXAMPLE:

0322
0323
0324

(Label) XCHD

Register address: SUM=E3
Before execution: RO=E3 SUM=29h A=AS&h,
After execution: A=A%h, SUM=28h

Yy | —
sum [ofof1fof1{o]o]1] [1{of1[o[1]ofofo0] A

"""""" [A

XRL A,@Ri - Exclusive OR indirect RAM to the accumulator

Ri: Register RO or R1

A: accumulator

Description: Instruction performs exclusive OR operation between the accumulator and the
indirectly addressed register. As it is indirect addressing, the register address is stored in the Ri
register (RO or R1). The result is stored in the accumulator.

Syntax: XRL A,@Ri;

Byte: 1 (instruction code);

STATUS register flags: No flags are affected;

EXAMPLE:

0123
0124 (Label) XRL A,(€R1
0125

Register address: TEMP=FAh, R1=FAh

Before execution: TEMP= C2h (11000010 Bin.)
A=54h (01010100 Bin.)

After execution: A= 96h (10010110 Bin.)

XRL A,direct - Exclusive OR direct byte to the accumulator

Direct: Arbitrary register with address 0-255 (0-FFh)

A: accumulator

Description: Instruction performs exclusive OR operation between the accumulator and the
direct byte. As it is direct addressing, the register can be any SFRs or general-purpose register
with address 0-7Fh (0-127 dec.). The result is stored in the accumulator.

Syntax: XRL A, direct;

Bytes: 2 (instruction code, direct byte address);

STATUS register flags: No flags are affected;

EXAMPLE:

0123
0124 (Label) XRL A,LOG
0125

Before execution: A= C2h (11000010 Bin.)
LOG= 54h (01010100 Bin.)
After execution: A= 96h (10010110 Bin.)

XRL direct,A - Exclusive OR accumulator to the direct byte

Direct: arbitrary register with address 0-255 (0-FFh)

A: accumulator

Description: Instruction performs exclusive OR operation between the direct byte and the
accumulator. As it is direct addressing, the register can be any SFRs or general-purpose register
with address 0-7Fh (0-127 dec.). The result is stored in the register.

Syntax: XRL direct,A;

Bytes: 2 (instruction code, direct byte address);

STATUS register flags: No flags affected;

EXAMPLE:

(Label) XRL TEMP, A

Before execution: TEMP= C2h (11000010 Bin.)

A=54h (01010100 Bin.)

After execution: A=96h (10010110 Bin.)

XRL A, #data - Exclusive OR immediate data to the accumulator
Data: constant in the range of 0-255 (0-FFh)

A: accumulator

Description: Instruction performs exclusive OR operation between the accumulator and the
immediate data. The result is stored in the accumulator.

Syntax: XRL A, #data;

Bytes: 2 (instruction code, data);

STATUS register flags: No flags are affected;

EXAMPLE:

0123
0124 (Label) XRL A, 11
0125

Before execution: A= C2h (11000010 Bin.)
X=11h (00010001 Bin.)
After execution: A=D3h (11010011 Bin.)

XRL direct,#data - Exclusive OR immediate data to direct byte

Direct: arbitrary register with address 0-255 (0-FFh)

Data: constant in the range of 0-255 (0-FFh)

Description: Instruction performs exclusive OR operation between the immediate data and the
direct byte. As it is direct addressing, the register can be any SFRs or general-purpose register
with address 0-7Fh (0-127 dec.). The result is stored in the register.

Syntax: XRL direct,#data;

Bytes: 3 (instruction code, direct byte address, data);

STATUS register flags: No flags affected;

EXAMPLE:

0123
0124 (Label) XRL TEMP, #12
0125

Before execution: TEMP= C2h (11000010 Bin.)
X=12h (00010010 Bin.)
After execution: A= DO0h (11010000 Bin.)

1. To initialise data to registers and memory using Immediate, Register, Direct and
Indirect addressing modes.

To initialise the following Registers and memory contents as specified below.

(RO)=9A

(B)=1F

(DPTR) = 4500

(R6) =9A

PROGRAM:
MOV RO,#9A ; (R0) = 9A - Immediate
MOV B#1F ; (B) = 1F - Immediate

MOV DPTR,#4500 ; (DPL) = 00;

; (DPH) =45 - Immediate

MOV R6,A ; (R6) <)) (A) - Register

MOV A,20; (A) <)) (20) - Direct

MOVX A,@DPTR ; (A) <)) (DPTR)) - Indirect

XCH A,RO; (A) <))> (RO) - Register

HERE: SJIMP HERE

2. To move a block (array) of data to another block to show how to employ indexed
addressing to access data stored in the form of a continuous array in memory.

PROGRAM:
MOV DPTR, #4500
MOVX A,@DPTR
MOV RO,A

INC DPTR

MOV R1,DPL
MOV R2,DPH
MOV DPTR, #4510
REPT: PUSH DPL
PUSH DPH

MOV DPL.R1
MOV DPH,R2
MOVX A,@DPTR
INC DPTR

MOV R1,DPL
MOV R2,DPH
POP DPH

POP DPL

MOVX @DPTR,A
INC DPTR

DINZ RO,REPT
HERE: SJMP HERE

3. To perform 16-bit addition of two 16-bit data using immediate addressing and store
the result in memory.

The program is to add the 16-bit data 1234 with the data 5678 and store the result at the locations
4150 and 4151 using immediate addressing.

RESULT: [4150] = AC (LSB); [4151] = 68 (MSB).

PROGRAM:

CLR C

MOV A #DATALLI
ADDC A #DATAL?2
MOV DPTR #4150
MOVX @DPTR,A
INC DPTR

MOV A #DATAMI
ADDC A #DATAM2
MOVX @DPTR,A
HLT: SJMP HLT

4. To perform subtraction of two 8-bit data using immediate addressing and store the
result in memory.

EXAMPLE:

Sample data: DATA1 =20

DATA2 =10

Result: [4500] =10

PROGRAM:

CLR C

MOV A#DATALI
SUBB A #DATA2
MOV DPTR,#4500
MOVX @DPTR,A
HERE: SJMP HERE

5. Subtract the contents of location 4500 from the contents of location 4501 and store
the result at location 4600.

EXAMPLE:

Sample data: [4500] = 56

[4501] = 6A

Result: [4600] = 14

PROGRAM:
MOV A #DATALI
MOV B #DATA2
MUL AB

MOV DPTR, #4500
MOVX @DPTR,A

INC DPTR

MOV A,B

MOVX @DPTR,A
HERE: SJMP HERE

6. Obtain the square of a number stored in memory.
Sample: [4500] = 0A
Result: [4600] = 64

7. To obtain the one's and two's complement of an 8-bit number in Register A.
The number whose complements are needed is in register A. The result is in location 4200 and
4201.

Sample data: DATA = CC

Result: [4200] = 33 - One's Complement

[4201] = 34 - Two's Complement

PROGRAM:

MOV A#DATA

CPL A

MOV DPTR, #4200

MOVX @DPTR,A

INC A

INC DPTR

MOVX @DPTR,A

HERE: SJMP HERE

8. To set specific bits of an 8-bit number.

THEORY:

Setting bits can be done by ORing that particular bit by 1. The following program explains how
to set a particular bit in an 8-bit number by using the ORL instruction of 8051.

EXAMPLE:

In the following program, the contents of the Accumulator is ORed with an immediate data
accordingly to set the required bits.

Sample Data : DATA1 = 2F

DATA2 =45

Result : [4500] = 6F

PROGRAM:
MOV A#DATALI
ORL A, #DATA2
MOV DPTR,#4500

MOVX @DPTR,A
HERE: SJMP HERE

9. To mask bits 0 and 7 of an 8-bit number and store the result in memory.
THEORY:

The ANL instruction of 8051 can be used to reset bits. ANDing with zero produces a cleared bit.
ANDing with one does not change the status of the bit.

EXAMPLE:
To mask bits 0 and 7, the 8-bit data has to be ANDed with 7E, which is 01111110 in binary.
Sample data: DATA1 =87

DATA2 = 7E
Result: [4500] = 06

PROGRAM:

MOV A #DATALI
ANL A #DATA2
MOV DPTR,#4500
MOVX @DPTR,A
HERE: SJMP HERE

10. To perform various Arithmetic Operations using Bit addressable Special Function
Registers of 8051.

THEORY:

Specific bits of various bit addressable registers can be ANDed, ORed with Carry flag,
CLeaRed, ComPLemented, SET and can be moved to Carry flag.

EXAMPLE:

In the following program, the contents of C(carry) is ANDed with ACC.7, ORed with IE.2. Also,
the contents of SCON.5 is set and that of SCON.1 is cleared and the contents of SCON.1 is
moved to the carry flag.

PROGRAM:
MOV A #0FFH
SETB C

ANL C,ACC.7
ORL C,IE.2
SETB SCON.5
CLR SCON.1
MOV C,SCON.1
HLT: SJMP HLT

11. To add the numbers of an 8-bit array, the array length being the first element in the
array and store the result in memory.
THEORY:
The numbers are stored in consecutive locations in memory. Addition has to be performed for
the number of times decided by the length of the array. Since the sum may exceed 8-bits, it is
necessary to monitor the carry flag status. Indexed addressing employing the 16-bit Base
Register DPTR is used in this program.
EXAMPLE:
The array starts at 4201. The address location 4200 contains the number of elements in that
array. The result is to be stored at 4500 and 4501.
Sample Data: [4200] = 03
[4201] =01
[4202] =02
[4203] =03
Result: [4500] = 00 (MSB)

[4501] =06 (LSB)

PROGRAM:
MOV DPTR,#4200 ;DPTR points to base of array

MOVX A,@DPTR

MOV RO,A ;RO has the length of array
MOV B,#0

MOV R1,B

ADD: CLR C

INC DPTR ;Increment the Pointer
MOVX A,@DPTR ;Get the element
ADD A,B ;Do the partial addition
MOV B,A

JNC NC ;Check for carry

INC R1 ;If carry set, then inc. MSB
NC: DJNZ R0,ADD ;Repeat it till count =0
MOV DPTR, #4500

MOV A,R1 ;Store the MSB first
MOVX @DPTR,A

INC DPTR

MOV A,B ;Store the LSB at 4501
MOVX @DPTR,A

HLT: SIMP HLT

12. To add two numbers that are more than 8-bit in length, the length being given as the
number of 8-bits in that number.

THEORY:

The multi-byte addition program adds only in sets of 8-bits. The LSD of the two numbers are
added first. Now, the next set of 8-bits is added, taking into consideration the status of carry due
to the previous addition. Addition is done till the length of the number specified becomes zero.
EXAMPLE:

The length of both the numbers is 3 bytes. The length is loaded in R4. The first data is stored
from 4200 with the LSB taking the first position. The second number starts at 4210.

Data: [4200] = 29 - First number

[4201] = A4

[4202] =02

[4210] = FB - Second number

[4211]1=37

[4212] =28

02 A4 29 (+)

28 37 FB

Result: [4500] = 24
[4501]=DC
[4502] =2A

PROGRAM:

CLR C ;Carry flag=0

MOV R4,#3 ;Count

MOV DPTR,#4200 ;Pointer for first no.
MOV R0O,DPL

MOV R1,DPH

MOV DPTR,#4210 ;Pointer for second no.
MOV R2,DPL

MOV R3,DPH

MOV DPTR,#4500 ;Pointer to store result
REPT: PUSH DPL

PUSH DPH

MOV DPL,RO

MOV DPH,R1

MOVX A,@DPTR

MOV B,A

INC DPTR

MOV RO,DPL
MOV R1,DPH
MOV DPL,R2
MOV DPH,R3
MOVX A,@DPTR
ADDC A,B

INC DPTR

MOV R2,DPL
MOV R3,DPH
POP DPH

POP DPL

MOVX @DPTR,A
INC DPTR

DINZ R4,REPT
HLT: SJMP HLT

13. To divide an 8-bit number by another 8-bit number and store the quotient and
remainder in memory.
THEORY:

The 8051 has a "DIV" instruction unlike many other 8-bit processors. DIV instruction divides
the unsigned eight-bit integer in A by the unsigned 8-bit integer in register B. The Accumulator
receives the integer part of the quotient and register B receives the integer remainder. The carry
and OV flags will be cleared.

EXAMPLE:

Let the divisor and dividend be in registers B and A respectively.
Data : DATA1 = 65 - Dividend

DATA2 = 08 - Divisor

Result : [4500] = 0C - Quotient

[4501] = 05 — Remainder

PROGRAM:

MOV A #DATAI1 ;Load Acc. with Dividend.
MOV B, #DATAZ2 ;Load Reg. B with Divisor.
DIV AB

MOV DPTR, #4500

MOVX @DPTR,A ;Store quotient at 4500
INC DPTR

MOV A, B ;Store remainder at 4501

MOVX @DPTR,A
HLT: SJMP HLT

14. To convert the ASCII number in the accumulator to its equivalent decimal number.
THEORY:

Conversion of an ASCII number to decimal is very simple because all the decimal numbers form
a sequence in ASCII. Any ASCII number can be converted to decimal just by subtracting 30
from it.

ASCII Number(Hex) Decimal Equivalent

ASCII Number(Hex) Decimal Equivalent

30 00
31 01
32 02
33 03
34 04
35 05
36 06
37 07
38 08
39 09

EXAMPLE:

Let the ASCII number be in Register A and the result be stored at 4500.
Data : DATA =35

Result : [4500] = 05

Data : DATA =3B

Result : [4500]= FF

PROGRAM:

MOV DPTR, #4500

MOV A#DATA ;Get ASClInumber
CLR C ;Clear carryflag

SUBB A, #30 ;Subtract [A] by30

CLR C

SUBB A,#0A ;Check if the no. is decimal
JC STR

MOV A #OFF ;Else storeFFat 4500
SIMP L1

STR: ADD A, #0A

L1: MOVX @DPTR,A ;Storetheresult if valid

HLT: SIMP HLT

15. Split the contents of 4500 into two nibbles (4-bitnumbers) and store the HN at 4501
and the LN at 4502.

THEORY:

The data is fetched from memory and SWAP instruction of 8051 isused which will interchange
The low and high-order nibbles of the Accumulator. The HN of the result is masked off and is
stored in memory. Then, the HN in the original data is masked off and is stored in memory.
EXAMPLE:

The contents of 4500 is 56. The result stored at 4501 is 05 and at 4502 is 06.

Data : [4500] = 56

Result : [4501] =05

[4502] = 06

PROGRAM:

MOV DPTR,#4500

MOVX A,@DPTR ;Get the data from memory

MOV B,A ;B has the original data

SWAP A

ANL A #OF

INC DPTR

MOVX @DPTR,A ;Store HN

MOV A,B ;Get original data
ANL A#0F ;Mask HN of original data
INC DPTR

MOVX @DPTR,A; Store LN

HLT: SIMP HLT

16. To obtain the decimal equivalent of an 8-bit hex number stored in memory.

THEORY:

In this program, the hex number is converted to its equivalent decimal number. The algorithm
followed is very simple. The hex number to be converted is brought to the accumulator and is
divided by100 D to find the number of hundreds in it. DIV instruction of 8051 isused in this
program. The remainder is now divided by10 D to count the number of tens in it. Finally, the
remainder obtained from the above division gives the number of units in the given hex number.
The result is stored in memory in the unpacked form.

EXAMPLE:

Let us work with FF.

Data : [4500] = FF

Result : [4501] =02

[4502] =05

[4503] =05

PROGRAM:

MOV DPTR, #4500
MOVX A,@DPTR ;Get thedata
MOV B, #64

DIV AB ;Find no. of100s
MOV DPTR., #4501
MOVX @DPTR,A
MOV AB

MOV B,#0A

DIV AB ;Find no. of10s
INC DPTR

MOVX @DPTR,A

INC DPTR

MOV AB

MOVX @DPTR,A

HLT: SIMP HLT

17. To convert BCD digits in memory to the equivalent hex number.

THEORY:

Considering that out of the two unpacked BCD digits at 4200 and 4201, the digit at 4200 is the
MSD, the logic is to multiply this byOA (10D) and then add the LSD at 4201 to the product.
EXAMPLE:

The digits are at 4200 and 4201 and let the result be stored at 4202.

Data : [4200] =03

[4201] =06

Result : [4202] =24

PROGRAM:

MOV DPTR,#4200

MOVX A,@DPTR

MOV B,#0AH

MUL AB

MOV B,A

INC DPTR

MOVX A,@DPTR

ADD A,B

INC DPTR

MOVX @DPTR,A

HLT: SIMP HLT

18. To find the biggest number in an arrayof 8-bit unsigned numbers of predetermined
length.

THEORY:

To find the Biggest number in any given array, the contents of the array must be compared with
an arbitrary Biggest number. In this experiment, since all numbers are said to be unsigned 8-bit
numbers, let Internal memory location (say 40H) has the biggest number i.e. zero. Now compare
the first number with Internal memory location. I fit is greater, move it to Internal memory
location. Further comparison is with this biggest number and this comparison is done till the
end of the array. Now the biggest number in Internal memory location is stored in memory as the
result.

EXAMPLE:

The length of the array is specified in the Register R5.The array itself starts at 4200. The largest
number of the array is stored at location 420A.

Data : [4200] = 05

[4201] =67

[4202] =76

[4203] =89

[4204] =98

[4205] =49

[4206] = 45

[4207] = 9F

[4208] =57

[4209] = 7TA

Result :[420A] = 9F

PROGRAM:

MOV DPTR, #4200

MOV 40H,#00

MOV RS5,#0AH

LOOP2: MOVX A,@DPTR

CINE A,40H,LOOPI

LOOP3: INC DPTR

DIJNZ R5,LOOP2

MOV A,40H

MOVX @DPTR,A

HLT: SIMP HLT

LOOPI: JC LOOP3

MOV 40H,A

SJIMP LOOP3

19. To arrange an array of 8-bit unsigned numbers of known length in ascending order.
THEORY:
The sorting technique used here is relatively simple. First consider the first two numbers of the

array. See if this pair of numbers is out of order. Similarly examine successively each pair of
numbers in the array. I f any pair is out of order interchange the numbers in the pair. Perform

this step for count times, count being one less than array length.
EXAMPLE:

The length of the array is in register R3. The array starts from 4501.
Data : [4500] =2A
[4501]=1C

[4502] =F9

[4503] =88

[4504] =76

Result : [4500] = 1C
[4501] =2A

[4502] =76

[4503] =88

[4504] =F9
PROGRAM:

MOV R3.,#4 ;Count-1
MOV R4.#4

MOV DPTR,#4500
REPT1: MOV R5,DPL
MOV R6,DPH
MOVX A,@DPTR
MOV B,A

REPT: INC DPTR
MOVX A,@DPTR
MOV RO,A

CLR C

SUBB A,B

JNC CHKNXT
EXCH: PUSH DPL
PUSH DPH

MOV DPL,R5
MOV DPH,R6
MOV A,RO

MOVX @DPTR,A
POP DPH

POP DPL

MOV AB

MOVX @DPTR,A
MOV B,R0
CHKNXT: DINZ R3,REPT
DEC R4

MOV A,R4

MOV R3,A

INC R4

MOV DPL,R5
MOV DPH,R6
INC DPTR

DINZ R4,REPTI1
HLT: SIMP HLT

20. To show the stack pointer contents and the contents of the stack itself areas depicted
below after the execution of each instruction

Instruction Register Contents Stack Contents

A B DPL

MOV SP.#10 XX XX XX SP initialised to 10 of
internal RAM

MOV A#88 88 XX XX A has 88

MOV B,#67 88 67 XX B has 67

MOV DPL,#43 88 67 43 DPL has 43

PUSH A 88 67 43 SP incremented by 1 and
(A) 1s stored here

PUSH B 88 67 43 SP incremented by 1 and (B)
is stored here

PUSH DPL) SP Incremented by 1 and
(DPL) 1s stored here.

e CONTIENT S AIMTHER IN=STRUOOTION PLS1I

CONTIENTS ATTHR INSTRUCTION PL=IT B

s

[ST&1

057

TER IN=TRUCTIHON PUSHS D

21. To write a program that generates delay of 0.5ms with the 8051 at the Clock rate of
12MHz.
THEORY:
Timing intervals or delays can be generated by either of the following three modes.
1. Hardware delays employing monostable multivibrators which produce a pulse output as
decided by the trigger.
i1. Programmable timers which are the combination of hardware and software.
iii. Software loops employing register(s) as a counter
PROGRAM:
MOV RO,#0FB
REPT: DJNZ RO,REPT
DELAYCALCULATION:
The MOV RO,#COUNTinstruction takes execution time of 1 Microsec and DJNZ instruction
takes 2Microsecs.
The count to be loaded into register RO is as calculated below:
1 + 2 x count = Execution time
Required Delay = 500 microseconds.
500 = 1+2xcount
500 -1
Count = -----------

2
=249.5D.
In hex the count = FB in hex.
The value FB has to be loaded in register RO to obtain a delay of 0.5 millisecond.

COUNTERS AND TIMERS

As you already know, the microcontroller oscillator uses quartz crystal for its operation. As the
frequency of this oscillator is precisely defined and very stable, pulses it generates are always of
the same width, which makes them ideal for time measurement. Such crystals are also used in
quartz watches. In order to measure time between two events it is sufficient to count up pulses
coming from this oscillator. That is exactly what the timer does. If the timer is properly
programmed, the value stored in its register will be incremented (or decremented) with each
coming pulse, i.e. once per each machine cycle. A single machine-cycle instruction lasts for 12
quartz oscillator periods, which means that by embedding quartz with oscillator frequency of
12MHz, a number stored in the timer register will be changed million times per second, i.e. each
microsecond. The 8051 microcontroller has 2 timers/counters called TO and T1. As their names
suggest, their main purpose is to measure time and count external events. Besides, they can be
used for generating clock pulses to be used in serial communication, so called Baud Rate.

TIMER TO
As seen in figure below, the timer TO consists of two registers — THO and TLO representing a low
and a high byte of one 16-digit binary number.

THO Register TLO Register
A A,

N
| [| | | [

it15 bittd bit13 bit12 bitd1 bit1D bitd bith bit? bith bits

Timer TO

Accordingly, if the content of the timer TO is equal to 0 (T0=0) then both registers it consists of
will contain 0. If the timer contains for example number 1000 (decimal), then the THO register
(high byte) will contain the number 3, while the TLO register (low byte) will contain decimal
number 232.

0 Value after reset

THO [Bit name

bit7

0 [+] Value after reset

TLO | I | Bit name

bit7? bits bit5 bit4 bit3 bit2 bit1 bit0

Formula used to calculate values in these two registers is very simple:
THO x 256 + TLO=T

Matching the previous example it would be as follows:

3 x 256 +232=1000

THO=3(Dec.) TL0=232(Dec.)
A A
r A Al

Lol oflofJolTofl 1711471041 4407140707 0]

bitis bit14 bit13 biti2z bit11 bit10 bitd bitd bit7 bit6 bits bitd bit3 bit2 bit1 kit
L. -

Timer T0=1000 (Dec.)

Since the timer TO is virtually 16-bit register, the largest value it can store is 65 535. In case of
exceeding this value, the timer will be automatically cleared and counting starts from 0. This
condition is called an overflow. Two registers TMOD and TCON are closely connected to this
timer and control its operation.

TMOD REGISTER (TIMER MODE)

The TMOD register selects the operational mode of the timers TO and T1. As seen in figure
below, the low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4 - bit7) refer to
the timer 1. There are 4 operational modes and each of them is described herein.

0 0 0 0 0 0 0 0 Value after reset

TMOD |cate1 | cm1 | 1am1 | 1imo [eateo | cmo | Tom1 | Tomo | Bitname
bit7 bit6 bits bit4 bit3 btz bitd bit0

Bits of this register have the following function:
e GATE]I enables and disables Timer 1 by means of a signal brought to the INT1 pin
(P3.3):
o 1-Timer 1 operates only if the INT1 bit is set.
o 0 - Timer 1 operates regardless of the logic state of the INT1 bit.

e (/TI selects pulses to be counted up by the timer/counter 1:
o 1 - Timer counts pulses brought to the T1 pin (P3.5).
o 0 - Timer counts pulses from internal oscillator.

e TIMI1,TIMO These two bits select the operational mode of the Timer 1.

T1MO MODE DESCRIPTION
T1M1
0 13-bit timer
0 16-bit timer

8-bit auto-reload

Split mode

GATEQ enables and disables Timer 1 using a signal brought to the INTO pin (P3.2):
o 1 -Timer 0 operates only if the INTO bit is set.
0 - Timer 0 operates regardless of the logic state of the INTO bit.

C/T0 selects pulses to be counted up by the timer/counter 0:
o 1-Timer counts pulses brought to the TO pin (P3.4).
o 0-Timer counts pulses from internal oscillator.

TOM1,TOMO These two bits select the oprtaional mode of the Timer 0.

DESCRIPTION
13-bit timer
16-bit timer

8-bit auto-reload

Split mode

TIMER 0 IN MODE 0 (13-BIT TIMER)

This is one of the rarities being kept only for the purpose of compatibility with the previuos
versions of microcontrollers. This mode configures timer 0 as a 13-bit timer which consists of all
8 bits of THO and the lower 5 bits of TLO. As a result, the Timer 0 uses only 13 of 16 bits. How
does it operate? Each coming pulse causes the lower register bits to change their states. After
receiving 32 pulses, this register is loaded and automatically cleared, while the higher byte (THO)
is incremented by 1. This process is repeated until registers count up 8192 pulses. After that,

both registers are cleared and counting starts from 0.

g N Mode O

TCON Register

5
THO TLO
N o [(TTITIT £ 11T

|04‘g [Timero: 0 - 8191)
I | <

I| m | a

| ﬂ | ﬂ

L et | [GATE]

TMOD Register

TIMER 0 IN MODE 1 (16-BIT TIMER)

Mode 1 configures timer 0 as a 16-bit timer comprising all the bits of both registers THO and
TLO. That's why this is one of the most commonly used modes. Timer operates in the same way
as in mode 0, with difference that the registers count up to 65 536 as allowable by the 16 bits.

Mode 1

TCON Register
TRO

l THO TLO
o~ [T [T

[Timer 0: 0 - 65535 J

I

| I
g {la

@ | @
[cm | [GATE]
TMOD Register

TIMER 0 IN MODE 2 (AUTO-RELOAD TIMER)

Mode 2 configures timer 0 as an 8-bit timer. Actually, timer 0 uses only one 8-bit register for
counting and never counts from 0, but from an arbitrary value (0-255) stored in another (THO)
register.

The following example shows the advantages of this mode. Suppose it is necessary to constantly
count up 55 pulses generated by the clock.

If mode 1 or mode 0 is used, It is necessary to write the number 200 to the timer registers and
constantly check whether an overflow has occured, i.e. whether they reached the value 255.
When it happens, it is necessary to rewrite the number 200 and repeat the whole procedure. The
same procedure is automatically performed by the microcontroller if set in mode 2. In fact, only
the TLO register operates as a timer, while another (THO) register stores the value from which the
counting starts. When the TLO register is loaded, instead of being cleared, the contents of THO
will be reloaded to it. Referring to the previous example, in order to register each 55th pulse, the
best solution is to write the number 200 to the THO register and configure the timer to operate in
mode 2.

Mode 2

TCON Register
TRO

, /“ TLO
- o~ o DR

: I I (0] | Timer 0: 0 - 255 |
II 0] 9 ‘
| (1) | a
[e | [GATE |
TMOD Register

|g o

TIMER 0 IN MODE 3 (SPLIT TIMER)

Mode 3 configures timer 0 so that registers TLO and THO operate as separate 8-bit timers. In
other words, the 16-bit timer consisting of two registers THO and TLO is split into two
independent 8-bit timers. This mode is provided for applications requiring an additional 8-bit
timer or counter. The TLO timer turns into timer 0, while the THO timer turns into timer 1. In
addition, all the control bits of 16-bit Timer 1 (consisting of the TH1 and TLI1 register), now
control the 8-bit Timer 1. Even though the 16-bit Timer 1 can still be configured to operate in
any of modes (mode 1, 2 or 3), it is no longer possible to disable it as there is no control bit to do
it. Thus, its operation is restricted when timer 0 is in mode 3.

TCON Register MOde 3

TCON Register THO

o T2 ReS= .

| TRO |
I Timer1: 0 - 255 l

TRO
8
TLO
" o> EEELLLED

l Timero: 0 - 255 l

1
1 B
Lecr [caTE |
TMOD Register

The only application of this mode is when two timers are used and the 16-bit Timer 1 the
operation of which is out of control is used as a baud rate generator.

TIMER CONTROL (TCON) REGISTER

TCON register is also one of the registers whose bits are directly in control of timer operation.
Only 4 bits of this register are used for this purpose, while rest of them is used for interrupt
control to be discussed later.

0 0 0 0 0 0 0 0 Valueafter Reset

TCON | 1/t | TRt [TF0 | TRO | IE1 | M | IE0 | 0 | Bitname
hit? hite hits hit4 hit3 hit2 hit1 hit0

TF1 bit is automatically set on the Timer 1 overflow.
TRI1 bit enables the Timer 1.

o 1-Timer 1 is enabled.

o 0-Timer 1 is disabled.
TFO0 bit is automatically set on the Timer 0 overflow.
TR0 bit enables the timer 0.

o 1 -Timer 0 is enabled.

o 0 - Timer 0 is disabled.

HOW TO USE THE TIMER 0 ?
In order to use timer 0, it is first necessary to select it and configure the mode of its operation.

Bits of the TMOD register are in control of it:

imer (

TMOD Register mtnvn TOMOD Bit Name
| o | 1

[l o I o
bit4

bit3 bit2 bit1 bit!
>
T 16-bit Timer {mode 1)

Pulses are brought
from quartz oscillator
to Timer {(ports)

P3.2 Pin doesn’t affect Timer

Referring to figure above, the timer 0 operates in mode 1 and counts pulses generated by internal
clock the frequency of which is equal to 1/12 the quartz frequency.
Turn on the timer:

TCON Register

The TRO bit is set and the timer starts operation. If the quartz crystal with frequency of 12MHz is
embedded then its contents will be incremented every microsecond. After 65.536 microseconds,
the both registers the timer consists of will be loaded. The microcontroller automatically clears
them and the timer keeps on repeating procedure from the beginning until the TRO bit value is
logic zero (0).

HOW TO 'READ' A TIMER?
Depending on application, it is necessary either to read a number stored in the timer registers or
to register the moment they have been cleared.

I. It is extremely simple to read a timer by using only one register configured in mode 2 or

3. It is sufficient to read its state at any moment.
II. It is somehow complicated to read a timer configured to operate in mode 2. Suppose the
lower byte is read first (TLO), then the higher byte (THO). The result is:

THO = 15 TLO =255
Everything seems to be ok, but the current state of the register at the moment of reading was:
THO = 14 TLO =255
In case of negligence, such an error in counting (255 pulses) may occur for not so obvious but
quite logical reason. The lower byte is correctly read (255), but at the moment the program
counter was about to read the higher byte THO, an overflow occurred and the contents of both
registers have been changed (THO: 14—15, TLO: 255—0). This problem has a simple solution.
The higher byte should be read first, then the lower byte and once again the higher byte. If the
number stored in the higher byte is different then this sequence should be repeated. It's about a
short loop consisting of only 3 instructions in the program.
There is another solution as well. It is sufficient to simply turn the timer off while reading is
going on (the TRO bit of the TCON register should be cleared), and turn it on again after reading
is finished.

TIMER 0 OVERFLOW DETECTION

Usually, there is no need to constantly read timer registers. It is sufficient to register the moment
they are cleared, i.e. when counting starts from 0. This condition is called an overflow. When it
occurrs, the TFO bit of the TCON register will be automatically set. The state of this bit can be
constantly checked from within the program or by enabling an interrupt which will stop the main
program execution when this bit is set. Suppose it is necessary to provide a program delay of
0.05 seconds (50 000 machine cycles), i.e. time when the program seems to be stopped:

First a number to be written to the timer registers should be calculated:

65536 - 50 000=1553:7 On Reset

Tx =15 536

T —

Tmax = 65 536

T =50 000

Then it should be written to the timer registers THO and TLO:

1 5536:256@6875
60-256=15360

15536-1 ssaoz@
THO‘=60 TLO=J 76 cj———_—/

s A 14]

Lol ol 11 111071]o0olol 110710 1101071 01]20]

BiEIE B4 WD W2 b bR WD bitk W7 bitd L] bitd Bitd bt il bitd

N,)

Timer T0=15536

When enabled, the timer will resume counting from this number. The state of the TFO bit, i.e.
whether it is set, is checked from within the program. It happens at the moment of overflow, i.e.
after exactly 50.000 machine cycles or 0.05 seconds.

HOW TO MEASURE PULSE DURATION?

INTO D

ey -

PIMNS

Suppose it is necessary to measure the duration of an operation, for example how long a device
has been turned on? Look again at the figure illustrating the timer and pay attention to the
function of the GATEO bit of the TMOD register. If it is cleared then the state of the P3.2 pin
doesn't affect timer operation. If GATEO = 1 the timer will operate until the pin P3.2 is cleared.
Accordingly, if this pin is supplied with 5V through some external switch at the moment the
device is being turned on, the timer will measure duration of its operation, which actually was
the objective.

HOW TO COUNT UP PULSES?

Similarly to the previous example, the answer to this question again lies in the TCON register.
This time it's about the C/T0 bit. If the bit is cleared the timer counts pulses generated by the
internal oscillator, i.e. measures the time passed. If the bit is set, the timer input is provided with
pulses from the P3.4 pin (TO). Since these pulses are not always of the same width, the timer
cannot be used for time measurement and is turned into a counter, therefore. The highest
frequency that could be measured by such a counter is 1/24 frequency of used quartz-crystal.

TIMER 1

Timer 1 is identical to timer 0, except for mode 3 which is a hold-count mode. It means that they
have the same function, their operation is controlled by the same registers TMOD and TCON
and both of them can operate in one out of 4 different modes.

THA1 TLA1

r

bit15 bit14 bit13 bit1Z bit11 bit10

Value after Reset

| Bit name

bit6 bit5 bitd bit3 bit2 bit1 bit0

Value after Reset

TL1 | | | | Bitname

bit? bité bits bit4 bit3 bit2 bit1 bit0

UART (UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER)

One of the microcontroller features making it so powerful is an integrated UART, better known
as a serial port. It is a full-duplex port, thus being able to transmit and receive data
simultaneously and at different baud rates. Without it, serial data send and receive would be an
enormously complicated part of the program in which the pin state is constantly changed and
checked at regular intervals. When using UART, all the programmer has to do is to simply select
serial port mode and baud rate. When it's done, serial data transmit is nothing but writing to the
SBUF register, while data receive represents reading the same register. The microcontroller takes
care of not making any error during data transmission.

X X X » N b4 X » Value after Resat

SBUF | l | I I | l l | Bit name

bit? bité bits bit4 bit3 bit2 bit1 bitDd

Serial port must be configured prior to being used. In other words, it is necessary to determine
how many bits is contained in one serial “word”, baud rate and synchronization clock source.
The whole process is in control of the bits of the SCON register (Serial Control).

SERIAL PORT CONTROL (SCON) REGISTER

0 0 0 0 0 0 0 0 Value after reset

SCON [smo | swi [sm2 [ren [188 [RB8 | T | m | Bitname
bit7 bité bits bitd bit3 btz bitl bit0

e SM0 - Serial port mode bit 0 is used for serial port mode selection.
e SMI - Serial port mode bit 1.

SM?2 - Serial port mode 2 bit, also known as multiprocessor communication enable bit.
When set, it enables multiprocessor communication in mode 2 and 3, and eventually
mode 1. It should be cleared in mode 0.
REN - Reception Enable bit enables serial reception when set. When cleared, serial
reception is disabled.
TBS - Transmitter bit 8. Since all registers are 8-bit wide, this bit solves the problem of
transmiting the 9th bit in modes 2 and 3. It is set to transmit a logic 1 in the 9th bit.
RBS8 - Receiver bit 8 or the 9th bit received in modes 2 and 3. Cleared by hardware if 9th
bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.
TI - Transmit Interrupt flag is automatically set at the moment the last bit of one byte is
sent. It's a signal to the processor that the line is available for a new byte transmite. It
must be cleared from within the software.
RI - Receive Interrupt flag is automatically set upon one byte receive. It signals that byte
is received and should be read quickly prior to being replaced by a new data. This bit is
also cleared from within the software.

As seen, serial port mode is selected by combining the SM0 and SM2 bits:

DESCRIPTION BAUD RATE
8-bit Shift Register 1/12 the quartz frequency
8-bit UART Determined by the timer 1
9-bit UART 1/32 the quartz frequency (1/64 the quartz frequency)

9-bit UART Determined by the timer 1

e e

1M2

~—— [UHn_ T !

- A A e T T T T[] SEeur

In mode 0, serial data are transmitted and received through the RXD pin, while the TXD pin
output clocks. The bout rate is fixed at 1/12 the oscillator frequency. On transmit, the least
significant bit (LSB bit) is sent/received first.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. In fact, this process
starts after any instruction being performed upon this register. When all 8 bits have been sent, the
TI bit of the SCON register is automatically set.

Pin RXD DO D1 D2 D3 D4 D5 D6 D7
Pin TXD | I | | I I I I I I | I | | | I

Bit TI I

RECEIVE - Data receive through the RXD pin starts upon the two following conditions are met:
bit REN=1 and RI=0 (both of them are stored in the SCON register). When all 8 bits have been
received, the RI bit of the SCON register is automatically set indicating that one byte receive is
complete.

DO D1 D2 D3 D4 D5 D6 D7

Pin TXD |||||||||||||||_|
Bit RI |

Since there are no START and STOP bits or any other bit except data sent from the SBUF
register in the pulse sequence, this mode is mainly used when the distance between devices is

short, noise is minimized and operating speed is of importance. A typical example is I/O port
expansion by adding a cheap IC (shift registers 74HC595, 74HC597 and similar).

MODE 1

g =]

N ' 111111 [T ‘1
Rxof [L1111] Ssu-
U -

-
RS SO N

In mode 1, 10 bits are transmitted through the TXD pin or received through the RXD pin in the
following manner: a START bit (always 0), 8 data bits (LSB first) and a STOP bit (always 1).
The START bit is only used to initiate data receive, while the STOP bit is automatically written
to the RB8 bit of the SCON register.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End of data
transmission is indicated by setting the TI bit of the SCON register.

START bit
Pin TXD ¥ D0 D1 XD2 D3 D4 >XD5 D6 XD7 > STOP bit

Bit TI |

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The
following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored in the
SCON register. The RI bit is automatically set upon data reception is complete.

START bit

Pin RXD ¥ _ B0 ><B1 B2 ><D3 ><B2 <B5 <06 ><B7 > STOP bit
Bit RI I

The Baud rate in this mode is determined by the timer 1 overflow.

MODE 2

T -~ lex=)
-— U e 0 == scomnN
[1111 Ssur

R D>
B T N 1 V1 S

=1

In mode 2, 11 bits are transmitted through the TXD pin or received through the RXD pin: a
START bit (always 0), 8 data bits (LSB first), a programmable 9th data bit and a STOP bit
(always 1). On transmit, the 9th data bit is actually the TBS bit of the SCON register. This bit
usually has a function of parity bit. On receive, the 9th data bit goes into the RB8 bit of the same
register (SCON).The baud rate is either 1/32 or 1/64 the oscillator frequency.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End of data
transmission is indicated by setting the TI bit of the SCON register.

START bit

PinTXD _Y L/ DOXBTXDZ XD XDEXDEXBE XD XTE STOP bit
Bit Tl |

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The
following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored in the
SCON register. The RI bit is automatically set upon data reception is complete.

START bit

PinRXD N\ Y /BOXDTXDZXD3XBEXDE D6 X7 XRED STOP bit

Bit RI

MODE 3

Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is
variable.

The parity bit is the P bit of the PSW register. The simplest way to check correctness of the
received byte is to add a parity bit to it. Simply, before initiating data transmit, the byte to
transmit is stored in the accumulator and the P bit goes into the TBS bit in order to be “a part of
the message”. The procedure is opposite on receiver, received byte is stored in the accumulator
and the P bit is compared with the RBS bit. If they are the same everything is fine.

BAUD RATE

Baud Rate is a number of sent/received bits per second. In case the UART is used, baud rate
depends on: selected mode, oscillator frequency and in some cases on the state of the SMOD bit
of the SCON register. All the necessary formulas are specified in the table:

BAUD RATE BITSMOD
Mode 0 Fosc./ 12

1 Fosc.
Mode 1 BitSMOD
ode 16 12 (256-THI) ISMO

Fosc. /32

M 2
ode Fosc. / 64

1 Fosc.
16 12 (256-THI)

TIMER 1 AS A CLOCK GENERATOR
Timer 1 is usually used as a clock generator as it enables various baud rates to be easily set. The
whole procedure is simple and is as follows:

First, enable Timer 1 overflow interrupt.

Configure Timer T1 to operate in auto-reload mode.

Depending on needs, select one of the standard values from the table and write it to the

Mode 3

THI1 register.

FOSC. (MHZ)
BAUD RATE BIT SMOD
11.0592 12 14.7456 16 = 20
150 40h 30h 00h
300 AOh 98h 80h 75h
600 DOh CCh COh BBh
1200 ESh E6h EOh DEh

2400 F4 h F3 h FO h EF h

MULTIPROCESSOR COMMUNICATION

As you may know, additional 9th data bit is a part of message in mode 2 and 3. It can be used for
checking data via parity bit. Another useful application of this bit is in communication between
two or more microcontrollers, i.e. multiprocessor communication. This feature is enabled by
setting the SM2 bit of the SCON register. As a result, after receiving the STOP bit, indicating
end of the message, the serial port interrupt will be generated only if the bit RB8 = 1 (the 9th bit).

This is how it looks like in practice:
Suppose there are several microcontrollers sharing the same interface. Each of them has its own
address. An address byte differs from a data byte because it has the 9th bit set (1), while this bit
is cleared (0) in a data byte. When the microcontroller A (master) wants to transmit a block of
data to one of several slaves, it first sends out an address byte which identifies the target slave.
An address byte will generate an interrupt in all slaves so that they can examine the received byte
and check whether it matches their address.

Master Slave Slave

1

K
[T:] |SCON [Tsw2]| |SCON I’m- SCON
[[IIITIT]SBUF [[TITTTTIsBUF [[TIITIT]SBUF

RXD TXD RXD TXD [ﬁ_’*r L,

b

Address C

— I

Of course, only one of them will match the address and immediately clear the SM2 bit of the
SCON register and prepare to receive the data byte to come. Other slaves not being addressed
leave their SM2 bit set ignoring the coming data bytes.

Master Slave

o |
T[] [SCON [I- SCON
[TTTTITse0k o (s

Ay

RXD TXD ._ - RXD TXD

I

L~
N,

PERIPHERALS

TIMERS:-

Timer is a very common and useful peripheral.

It is used to generate events at specific times or measures the duration of specific events
which are external to the processor.

It is a programmable device, i.e. the time period can be adjusted by writing specific bit
patterns to some of the registers called timer-control registers.

A timer measures time by counting pulses that occur on an input clock signal having a
known period.

COUNTERS:-

A counter is nearly identical to a timer except that instead of counting the clock cycle, a
counter counts the number of pulses of input signal.

It can be free running device with a clock input pulse and for comparing the counts with
one which is preloaded in the register.

This device is used for the alarm and the other processors.

It is useful for the processor interrupt at the preset time.

WATCHDOG TIMERS:-

A watchdog timer (WDT; sometimes called a computer operating properly or COP timer,
or simply a watchdog) is an electronic timer that is used to detect and recover from
computer malfunctions.

During normal operation, the computer regularly restarts the watchdog timer to prevent it
from elapsing, or "timing out".

If, due to a hardware fault or program error, the computer fails to restart the watchdog,
the timer will elapse and generate a timeout signal.

The timeout signal is used to initiate corrective action or actions. The corrective actions
typically include placing the computer system in a safe state and restoring normal system
operation.

Watchdog timers are commonly found in embedded systems and other computer-
controlled equipment where humans cannot easily access the equipment or would be
unable to react to faults in a timely manner.

In such systems, the computer cannot depend on a human to reboot it if it hangs; it must
be self-reliant.

LCD CONTROLLERS:-

A liquid crystal display (LCD) is a low cost, low power device capable of displaying text
and images.

LCDs are extremely common in embedded systems.

LCDs can be found in numerous common devices like watches, fax and copy machines
and calculators.

Each type of LCD may be able to display multiple characters.

The LCD may permit a character to be blinking or may permit display of a cursor
indicating the “current” character. Such functionality would be difficult for us to
implement using software.

Thus we use an LCD controller to provide us with a simple interface to an LCD with
eight data input and one enable input.

To send a byte to the LCD, we provide a value to the eight inputs and one enable input.

This byte may be a control word, which instructs the LCD controller to initialize the
LCD, clear the display, select the position of the cursor, brighten the display and so on.

KEYPAD CONTROLLERS:-

A keypad consists of a set of buttons that may be pressed to provide input to an
embedded system.

A simple keypad has buttons arranged in an N- column by M-row grid as shown in the
figure below.

=
M o=

keypad controll

N-4,M+4

The device has N outputs, each output corresponding to a column, and another M
outputs, each output corresponding to a row. When a button is pressed one column output
and one row output go high, uniquely identifying the pressed button.

To read such a keypad from software, scan the column and row outputs. The scanning is
performed by keypad controller.

The controller scans the column and row outputs of the keypad. When the controller
detects a press button, it stores a code corresponding to that button into a register,
key code, and sets an output high, k pressed, indicating that a button has been pressed.
The software may poll this output every 100 milliseconds or so, and read the register
when the output is high.

ANALOG TO DIGITAL CONVERTERS:-

An ADC is a device which converts the analog signal to a digital signal and a digital
signal to analog signal by the help of digital to analog converter.
Such conversion are necessary because the embedded system deals with digital signal and
is surrounded by system involving analog signal.
The analog to digital conversion goes under the following 3 process:-

1. Sampling

2. Quantization

3. Coding

Block diagram of ADC:-

A/D converter

Discrete-time Quantized
signal signal

Basic parts of an analog-to-digital (A/D) converter.

1. Sampling:-
It is the process in which a continuous time signals or analog signal is converted into
discrete time signal. This is done by the device sampler.

2. Quantization:-
It is a process as in which a discrete time signal is converted into quantized signal. It can
also defined as the process of conversion from continuous value to discrete value. This
process is done by the device called quantizer.
3. Coding:-
e Coding is the process in which the discrete valued signal is converted into
corresponding binary form.
Analog always refers to continuous valued signal and digital always refers to
discrete valued signal.
By converting from analog to digital we use a device called digital processor to
compute the analog value to digital value.
For this the formula is
e/Vimax=d/ (2" = 1)

where V.« = Maximum voltage of analog signal
n = no. of bits available for digital encoding
d = the present digital encoding

e = the present analog voltage

e The resolution of the digital signal can be found by the formula V.x/ (2" - 1).

REAL - TIME CLOCKS:-

e A real — time clock (RTC) keeps the time and date in an embedded system.

e Real — time clocks are typically composed of a crystal — controlled oscillator, cascade
counters and battery backup.

e The crystal — controlled oscillator generates a very consistent high-frequency digital
pulse that feeds the cascaded counters.

e The first counter counts these pulses up to the oscillator frequency, which corresponds to
exactly one second.

e At this point it generates a pulse that feeds the next counter. This counter counts up to 59,
at which point it generates a pulse feeding the minute counter. The hour, date, month and
year counters work in the same manner. Real- time clocks adjust for the leap years.

e The rechargeable back-up battery is used to keep the real-time clock running the system
is powered off.

APPLICATION OF EMBEDDED SYSTEMS

TEMPERATURE MEASURING SYSTEM:-

In many systems, temperature control is fundamental. There are a number of passive and
active temperature sensors that can be used to measure system temperature, including:
thermocouple, resistive temperature detector, thermistor and silicon temperature sensors.
These sensors provide temperature feedback to the system controller to make decisions such
as, over-temperature shutdown, turn-on/off cooling fan, temperature compensation or general
purpose temperature monitor.

Common Methods of Interfaclng a Sensor

[
Analog Output -"*\EA-‘\"'I

Wit
Sarial Output Epliglip
I —

.: i Logic Output (N_--l_,-q
— =)

Thermocouple,
—| Thermistor/Amplifiers

Op Amps/Companmtons

MCPGE541

AR
ALY
R

Thermistorf : +_-:m

Amplifiers

MCPE521

Progmammabla
Gain Amplifiar
(PGA)

Temperature Measurement Applications

e Computing:

e CPU overtemperature protection

e Fan control
Cellular/PCS:
Power amplifier temperature compensation
Thermal sensing of display for contrast control
Power Supply Embedded Systems:
Overtemperature shutdown
Battery management

HERIAL CATA TRAMGFER
FOR OFFLINE AMALYRELS

HARDWARE
CONTROL

ADCOE09 AT %9552
H

TRANIDUCER

Hardware Description
Whole circuit can be divided into following sections:-

(a) Power supply section: The regulated power supply section made with full wave rectifier
(with IN 4007 diodes) using voltage regulator IC 7805 and IC 7812 which provide a
constant voltage of 5V to the circuit as well as constant 12V to relays.

(b) Analog to digital conversion section: Since we have to sense analog parameters i.e.
temperature and light hence we have to use any analog to digital converter. We have opted for
ADC 0809 as it has 8 channels and is microprocessor compatible ADC which is easily available.
It will convert the analog signal of the transducer to digital value with respect to the reference
voltage which in our case is 2.5V. This reference voltage is obtained using TL431, which is a
programmable shunt voltage reference with output voltage range of 2.5V to 36V and works like
zener diode. For the conversion ADC requires a reference frequency which is supplied from 555
IC in the form of astable oscillator. The conversion frequency is kept around 150 kHz. Sensor
used for temperature measurement is LM 35 and for light intensity is LDR. LM 35 is calibrated
in °C and is linear in +10 mV/ °C scale factor with 0.5°C accuracy [5]. The calibration curve
given here with will make the scenario clear.

Washing Machine

- Water Supgly
= Dralm
- Softanar Supply

Isolation S, ACIM
and L | 3-Phase - ™y mLOC
Gate A !

o

1 Inwerter s A PMEM
‘Qﬁ

b
Water Pump and 4
P | | I M)
:} Busffer e | Fan Motor Drive l_____/

— Wi-Fi ®
EUNCH » Wireless T Zilh BI“.
Haptics H Touch and Front Connectivity - MEC

Panel Contraller

Warer Level Optical |
[Tuir beieliny) Vol ume Sensar
Temperature

Cower Switch

LEGEND B Legic
B Processor [Power

Circuit Protection for UL Compliance B interface B ADC/DAC

RFSIF Clocks

Power ;‘:;:; .—| :::: I—. Motor, Pump, etc B Amplifier I Other
— Supply

Protection Unit LED System » MCU, _etc
Driver Power

Description

Today's state-of-the-art high-end appliances are more energy efficient, consume less water, and
are smarter than the machines developed in years past. Texas Instruments has developed
products to meet the challenges and requirements for these new sophisticated systems.

Energy Efficiency: Home appliance (a.k.a. white goods) motors are often oversized to account
for the load torque changes and transients. Scalar techniques for control can result in inefficient
systems and noisy operation. This, in turn, leads to a mediocre energy efficiency that hovers in
the 40% to 50% range. By implementing the control system with TI's digital signal controllers,
designers are able to implement smaller, quieter motors with energy efficiency as high as 85% -
90%. A high efficiency is necessary to receive a stamp of approval from a governing body such
as the US Environmental Protection Agency and Department of Energy's STAR rating.

Power Factor Correction (PFC): PFC is a technique of counteracting the undesirable effects of
electric loads that create a power factor that is less than 1. In washing machines, PFC is needed
because of the continuous transients and surge currents exhibited by the electric motor during the
wash cycle, for example. It is also used to boost the rectified mains voltage up to 300 V to 450
V, which is then used to power the 3-phase inverters which ultimately operate the electric motor.

With TI products, PFC can be performed externally with a separate integrated circuit or it can be
done in the digital signal controller eliminating the need for a separate external PFC controller.

IEC 60730 Compliance: Home appliance manufacturers continually introduce new design
enhancements to their automatic electronic controls that ensure safe, reliable and efficient
operation of the equipment. Among other things, the IEC 60730 specification discusses
mechanical, electrical, electronic, EMC, and abnormal operation of AC appliances. For
microcontrollers, the specification details new test and diagnostic methods for the real-time
embedded software to ensure the safe operation of embedded control hardware and software. All
TI TMSxx24xxxx and TMSxx28xxxx digital signal controllers support IEC 60730 compliance.

High-Voltage Isolation: For larger, higher-performance products where reliability and motor-
control accuracy are key concerns, TI offers isolation products that block high voltage, isolate
grounds, and prevent noise currents from entering the local ground and interfering with or
damaging sensitive circuitry.

Integration: Texas Instruments provides fully-integrated solutions such as the digital signal
controllers (for digital motor control, PFC, and other system functions), and relay drivers that
provide up to 8 channels, zero-volt detection, and 5 V linear regulation for 5 V logic that may
reside on the board.

Switches and Push buttons
There are no simpler devices than switches and push-buttons. This is the simplest way of detecting
appearance of a voltage on the microcontroller input pin.

P ower Off

o

Nevertheless, it is not so simple in practice... It is about contact bounce- a common problem with
mechanicalswitches. When the contacts strike together, their momentum and elasticity act
together to cause bounce. The result is a rapidly pulsed electrical current instead of a clean
transition from zero to full current. It mostly occurs due to vibrations, slight rough spots and dirt

between contacts. This effect is usually unnoticeable when using these components in everyday
life because the bounce happens too quickly. In other words, the whole this process does not last

long (a few micro- or miliseconds), but it is long enough to be registered by the microcontroller.
When using only a push-button as a pulse counter, errors occur in almost 100% of cases.

o +5V
10K|-_£|

Microcontroller

The simplest solution to this problem is to connect a simple RC circuit to suppress quick voltage
changes. Since the bounce period is not defined, the values of components are not precisely
determined. In most cases, it is recomended to use the values shown in figure below.

If complete stability is needed then radical measures should be taken. The output of the circuit,
shown in figure (RS flip-flop), will change its logic state only after detecting the first pulse
triggered by contact bounce. This solution is expensive (SPDT switch), but effecient, the problem
is definitely solved. Since the capacitor is not used, very short pulses can also be registered in this

way.

i,

+5V ©
4KT7 4K7
TAHCOOD

Microcontraller

In addition to these hardware solutions, there is also a simple software solution. When a program
tests the state of an input pin and detects a change, the check should be done one more time after a
certain delay. If the change is confirmed, it means that a switch or push button has changed its
position. The advantages of such solution are obvious: it is free of charge, effects of noises are
eliminated and it can be applied to the poorer quality contacts as well. Disadvantage is the same as
when using RC filter, i.e. pulses shorter than program delay cannot be registered.

Working of windscreen wiper:-

The working of the wiper is based on the conversion of the wiper motors linear motion into linear
back and forth movement of the wiper blades. The wiper combines two mechanical technologies

to perform their tasks:

A combination of electric motor and worm gear reduction power to the wipers and a neat linkage

converts the rotational output of the motor into the back and forth motion of the wiper.

Motor takes a lot of force to accelerate the wiper blades back and forth across the windshield so
quickly. In order to generate this type of force, a worm gear is used on the output of a small
electric motor. The worm gear reduction can multiply the torque of the motor by about 50 times
and can slow it down with the same force. The output of the gear reduction operates a linkage that
moves the wipers back and forth. Inside the motor/gear assembly is the electronic circuit which
senses the wipers are in their down position. The circuit maintains power to the wipers until they
are parked at bottom of the windshield, and then cuts the power to the motor. A short cam is
attached to the output shaft of the gear reduction. This cam spins around as the wiper motor turns.
The cam is connected to a long road; as the cam spins, it moves the rod back and forth. The long
rod is connected to a short rod that actuates the wiper blade on the driver’s side. Another long rod
transmits the force from the driver’s side to the passenger’s side wiper blade.

Power Suppy Unit

|

7 Contorl
Switch

PIC Controller

Motor Driver
[irrnit

[Rain Detector
SENSUr

The basic control units of the hardware comprises of power supply unit, control switch, wiper
motor, rain detector sensor ,motor driver circuit and the most important of all pic controller. Power
supply unit maintains the continuous power to the controller and the wiper motor. Control switch
is directly connected to the controller. Motor driver circuit is linked with the wiper motor and the
controller. The command it gets from the controller is used to either drive the wiper motor or
switch it off. Rain detection sensor detects the amount of moisture on the windscreen and
accordingly sends the signal to the controller. A wiper motor control using a load sense resistor to
monitor conditions confronting the wiper operation.

The control switch can detect if the wiper is frozen to the window, moving too slowly, moving too
quickly, etc. The power to the motor is then adjusted to achieve a desired speed, or, otherwise
adjusted, based upon the detected conditions. Further, the direction of the motor may be reversed
based upon the detected conditions. In a preferred embodiment, the load sense resistor is provided
by a defroster filament strip. Alternatively, a temperature sensor may be used to detect the
conditions confronting the wiper operation.

PROGRAMMABLE LOGIC CONTROLLERS

INTRODUCTION:-

A programmable logic controller (PLC) is a specialized computer used to control machines and
processes. It uses a programmable memory to store instructions and execute specific functions that
include on/off control, Timing, Counting, Sequencing, arithmetic and data handling.
Programmable logic controllers are used for the control and operation of manufacturing process
equipment and machinery.

PARTS OF A PLC:-

e A typical PLC can be divided into parts as illustrated in the Figure below. These
components are the central processing unit (CPU), the input /output (I/O) section, the
power supply and the programming device.

The term architecture can refer to PLC hardware to PLC software, or to a combination of
both.

Power supply

REAL WORLD
.

Programming device

(a) Parts
The structure of a PLC is based on the same
principles as those employed in computer
architecture

(b) Architecture

FIGURE: - PLC parts and architecture

There are two ways in which 1/O is incorporated into the PLC: fixed and modular.

Fixed I/ O is typical of small PLCs that come in one package with no separate, removable
units. The processor and I/O are packaged together, and the I/O terminals are available but
cannot be changed.

The main advantage of this type of packaging is lower cost.
One disadvantage of fixed I/O is its lack of flexibility.

/ \
INput Module Output Mmodule

FIGURE: I/O configurations: (a) fixed I/O (b) modular 1/0

Modular I/O in figure shown above is divided by compartments into which separate
modules can be plugged. This feature greatly increases your options and the unit's
flexibility. The basic modular controller consists of a rack, power supply, processor
module (CPU), input/output (I /O modules), and an operator interface for programming
and monitoring. The modules plug into a rack. When a module is slid into the rack, it
makes an electrical connection with a series of contacts called the backplane, located at the
rear of the rack.

The power supply supplies dc power to other modules that plug into the rack. For large
PLC systems, this power supply does not normally supply power to the field devices. With
larger systems, power to field devices is provided by external alternating current (ac) or
direct current (dc) supplies.

The processor (CPU) is the "brain" of the PLC. A processor usually consists of a
microprocessor for implementing the logic and controlling the communications among the
modules. The processor requires memory for storing the results of the logical operations
performed by the microprocessor. Memory is also required for the program EPROM or
EEPROM plus RAM.

The I/0 section consists of input modules and output modules (Fig. shown below). The 1/0O
system forms the interface by which field devices are connected to the controller. The

purpose of this interface is to condition the various signals received from or sent to

external field devices. Input devices such as pushbuttons, limit switches, sensors, selector
switches, and thumbwheel switches are hardwired to terminals on the input modules.
Output devices such as small motors, motor starters, solenoid valves, and indicator lights
are hardwired to the terminals on the output modules.

Iinpul held devices

.

Owutput held dewvices

Common returmn Dus

tan

FIGURE: (a) Typical input module (b) typical output module

The programming device, or terminal, is used to enter the desired program into the
memory of the processor. This program is entered using relay ladder logic, which is the
most popular programming language used by all major manufacturers of PLCs. Ladder
logic programming language uses instead of words, graphic symbols that show their
intended outcome. It is a special language written to make it easy for people familiar with
relay logic control to program the PLC.

THE 1/0 SECTION:-

e The I/O section consists of an I/O rack and individual I/O modules similar to that shown in
Figure shown below. Input interface modules accept signals from the machine or process
devices and convert them into signals that can be used by the controller. Output interface
modules convert controller signals into external signals used to control the machine or
process.

Power
SUPF ,):
0 1 2 3 4 5 6 S
Processor ‘———————
module 110 modules

A typical PLC has room for several /'O modules that
plug into siots in a rack.

Figure: 1/0 section

e The I/O system provides an interface between the hardwired components in the field and
the CPU. The input interface allows status information regarding processes to be
communicated to the CPU, and thus allows the CPU to communicate operating signals
through the output interface to the process devices under its control.

e A chassis is a physical hardware assembly that houses devices such as I/O modules,

processor modules, and power supplies. Chassis come in different sizes according to the
number of slots they contain. In general, they can have 4, 8, 12, or 16 slots.
A logical rack is an addressable unit consisting of 128 input points and 128 output points.
A rack uses 8 words in the input image table file and 8 words in the output image table file.
A word in the output image table file and its corresponding word in the input image table
file are called an I/O group. A rack can contain a maximum of 8 I/O groups (numbered
from 0 through 7) for up to 128 discrete I/O (Fig. shown below). There can be more than
one rack in a chassis and more than one chassis in a rack.

Processor 128 1/0 rack

Input image lable

10 1112 13 14 151
10 1112 13 14 15
1D H11;i ';1 14 15 1
10 1112 13 14 1§
10 1112

10 1112 13

10 1112

10 1112

1:00
10N
1102
1:03
1:04
1:05
I:08
107

rRR R RN
W W L W
O Ch OB

B bk b b L b Lk B
UnnCnLn O LA Ln Ly
wd owml owm owm o owmj =)

N
fa2)

%]
L L

Allen-Bradley PLC-5 family uses an octal numbening system lo
address bit localions. Notice that the 16 bils are numbered 0
through 7 and 10 through 17. In the octal numbering system,
the numbers 8 and 9 are never used

Figure: Logical rack

One benefit of a PLC system is the ability to locate the I/O modules near the field devices
to minimize the amount of wiring required. This rack is referred to as a remote rack when
it is located away from the processor module.

The location of a module within a rack and the terminal number of a module to which an

input or output device is connected will determine the device's address (Fig. shown below).
Each input and output device must have a specific address. This address is used by the
processor to identify where the device is located to monitor or control it. In addition there
is some means of connecting field wiring on the I/O module housing. Connecting the field
wiring to the I/O housing allows easier disconnection and reconnection of the wiring to
change modules. Lights are also added to each module to indicate the ON or OFF status of

each I/O circuit. Most output modules also have blown fuse indicators.
Fnh type

File number
o0 0 1 ¢/ 00
" - Elemom number
Suuelamem number
Bit delimiter = Bit number

Group (0 — 7): 8 groups in a rack T 7 01
Rack no
File del L L Terminal number
File no For terminals above #15
File type (O—output: I—input) Siot number

= Module type

‘51‘327 17 ; Input, file 1, rack 2 7.bit 17 - <
- i . group 7, 00:4.0/15-Output module in slot 4, &
00:34/07 — Output, file 0, rack 3, group 4. bit 7 11:3.0/8-Input module in aiot 3, termings &
11:0 0~ Input, file 1, rack 0, group 0, bit O (Short form blank = 0) 00:6.0-Output module, siot 6
00:11 = Qutput, file 0, rack 0, group 1. bit 1 11.5 0—iInput module, s!& S

A
, ‘— Terminal number (bit address)

(a) Allen-Bradiey PLC 5 addressing format. (b) Allen-Bradiey SLC 500 addressing format

Address Address
Type Siot Word Bit Inputs Outputs Type Siot Word Bit

- -

(c) Discrete 1/O module addressing

In general, basic addressing elements include:

* TYPE
The type determines if an input or output is being addressed.

* SLOT
The slot number is the physical location of the I/O module. This may be a combination of

the rack number and the slot number when using expansion racks.

* WORD AND BIT
The word and bit are used to identify the actual terminal connection in a particular I/O

module. A discrete module usually uses only one word, and each connection corresponds
to a different bit that makes up' the word.

PLC MEMORY ORGANIZATION:-

The term processor memory organization refers to how certain areas of memory in a given
PLC are used.

Figure given below shows an illustration of the Allen-Bradley PLC-2 memory organization,
known as a memory map. Every PLC has a memory map, but it may not be like the one illustrated.
The memory space can be divided into two broad categories: the user program and the data table.
The individual sections, their order, and the sections' length will vary and may be fixed or
variable, depending on the manufacturer and model.

B« agddress

Word address —er——1 ¥
000 00

Inputioutput locations 0% 37
Data table Internal relay and Ot et abie fin
timar/counter locations 7

The user program causes
the controller to operate in
a particular manner Timericountar

accumulated values
{or bit‘word storage)

Used to carry out functions

Housekeeping memory neaded to make the

processor operate
e (No access by user)

(a) General organization - i

Timer/countar prese! valuaes

End of
Memory
(&) Memory map shows how memory is organized

Figure: Memory map for an Allen-Bradley PLC-2

The user program is where the logic ladder program is entered and stored. The user
program will account for most of the total memory of a given PLC system. It contains the
logic that controls the machine operation. This logic consists of instructions that are
programmed in a ladder logic format. Most instructions require one word of memory.

The data table stores the information needed to carry out the user program. This includes
information such as the status of input and output devices, timer and counter values, data
storage, and so on. Contents of the data table can be divided into two categories: status
data and numbers or codes. Status is ON/OFF type of information represented by 1s and
0s, stored in unique bit locations. Number or code information is represented by groups of
bits that are stored in unique byte or word locations.

A processor file is the collection of program files and data files created under a particular
processor file name. It contains all the instructions, data, and configuration information

pertaining to a user program.

Figure shown below shows typical program and data file memory organization for an Allen-
Bradley SLC-500 controller. The contents of each file are outlined in the sections that follow.

Program files:-

Program files are the areas of processor memory where ladder logic programming is stored. They
may include:

System functions (file 0) - This file is always included and contains various system-
related information and user programmed information such as processor type. I/O
configuration processor files name, and password.

Reserved (file 1)-This file is reserved by the processor and is not accessible to the user.
Main ladder program (file 2) - This file is always included and contains user
programmed instructions that define how the controller is to operate.

Subroutine ladder program (files3- 255)-These files are user-created and are activated
according to subroutine instructions residing in the main ladder program file.

System functons

Reserved

User program

Subroutine programs

Figure: Program and data file memory organization for an Allen-Bradley SLC-500 controller

Data Files:-

The data file portion of the processor's memory stores input and output status, processor status, the
status of various bits, and numerical data. All this information is accessed via the ladder logic
program. These files are organized by the type of data they contain and may include:

Output (file 0) - This file stores the state of the output terminals for the controller.

Input (file 1)-This file stores the status of the input terminals for the controller.

Status (file 2) - This file stores controller operation information. This file is useful for
troubleshooting controller and program operation.

Bit (file 3)-This file is used for internal relay logic storage.

Timer (file 4)-This file stores the timer accumulated and preset values and status bits.
Counter (file 5)-This file stores the counter accumulated and preset values and status bits.
Control (file 6)-This file stores the length, pointer position, and status bit for specific
instructions such as shift registers and sequencers.

Integer (file 7)-This file is used to store numerical values or bit information.

Reserved (file 8) - This file is not accessible to the user.

Network communications (file 9) - This file is used for network communications if
installed or used like files 10-255.

User-defined (files 10-255)-These files are user-defined as bit, timer, counter, control,
and/or integer data storage.

PROGRAM SCAN OF A PLC:-

During each operating cycle, the processor reads all the inputs, takes these values, and
energizes or de-energizes the outputs according to the user program. This process is known
as a scan. Figure shown below shows a single PLC scan, which consists of the I/O scan
and the program scan. Because the inputs can change at any time, the PLC must carry on
this process continuously.

/O scan—ecords status dala
of input devices. Energaes
output devices that have their
associated status bits sel 1o ON

Figure: Single PLC scan

The PLC scan time specification indicates how fast the controller can react to changes in
inputs. Scan time varies with program content and length. The time required to make a
single scan can vary from about 1 ms to 20 ms. If a controller has to react to an input signal
that changes states twice during the scan time, it is possible that the PLC will never be able
to detect this change.

For example, if it takes 8 ms for the CPU to scan a program, and an input contact is

opening and closing every 4 ms, the program may not respond to the contact changing
state. The CPU will detect a change if it occurs during the update of the input image table
file, but the CPU will not respond to every change. The scan is normally a continuous and

sequential process of reading the status of inputs, evaluating the control logic, and updating
the outputs.

Figure shown below illustrates this process.

Program

v
el —
Check/compare/examine T
specific conditions Take some action

(@) Data flow overview
Processor memory Qutput
Data module
Quiput

image e
table

file

0A——n

gl
136 047

Program

(b) Scan cycle
Figure: Scan Process

e When the input device connected to address 1:3/6 is closed, the input module circuitry

module circuitry senses a voltage and a 1 (ON) condition is entered into the input image
table bit 1:3/6. During the program scan, the processor examines bit I: 3/6 for a 1 (ON)
condition.
In this case, because input I: 3/6 is 1, the rung is said to be TRUE. The processor then sets
the output image table bit O: 4/7 to 1. The processor turns on output O: 4/7 during the next
I/O scan, and the output device (light) wired to this terminal becomes energized. This
process is repeated as long as the processor is in the RUN mode. If the input device were to
open, a 0 would be placed in the input image table. As a result, the rung would be called
FALSE. The processor would then set the output image table bit O: 4/7 to 0, causing the
output device to turn off.

CONTROL INSTRUCTIONS OF PLC:-

Figure given below shows typical program control instructions.

Instructions comprising the override instruction group include the master control reset
(MCR) and jump (JMP) instructions.

These operations are accomplished by using a series of conditional and unconditional
branches and return instructions.

4

=5} 01 s) i 0

.IMP‘ LBL

i

) Program Control £ Ascii Control £ Ascil String £ Micrd

Command Name Description

Jump forward /backward to a

JMP Jump to Label corresponding label instruction

LBL Label Specifies label location

Jump lo a designaled subroutine

JSA Jump 1o Subroutine instruction

Exits curreni subroutine and

Retum from Subroutine returns 1o previous condition

Subroutine Identifies the subrouline program

Makes a temporary end that haits
Yemporary End program execution

Clears all st outpuls between
Master Control Reset the paried MCR instructions

Identifies specific conditions for
program debugging and system
troubleshooting

Hardwired master control relays are used in relay circuitry to provide input/output power
shutdown of an entire circuit. Figure shown below is a typical hardwired master control
relay circuit. In this circuit, unless the master control relay coil is energized, there is no
power flow to the load side of the MCR contacts. The master control relay circuit shown in
Figure below could not be programmed into the PLC as it appears because it contains two
vertical contacts. For this reason, most PLC manufacturers include some form of master
control relay as part of their instruction set. These instructions function in a similar manner
to the hardwired master control relay; that is, when the instruction is true, the circuit
functions normally, and when the instruction is false, outputs are switched off. Because
these instructions are not hardwired but programmed, for safety reasons they should not be
used as a substitute for a hard- wired master control relay, which provides emergency I/O
power shutdown

MASTER START
MASTER STOP [

& L 4

Figure: Hardwired master control relay circuit

The master control reset instruction can be programmed to control an entire circuit or to
control only selected rungs of a circuit. In the program of figure shown below, the MCR is
programmed to control an entire circuit. When the MCR instruction is false, or de-
energized, all non retentive (nonlatched) rungs below the MCR will be de-energized even

if the programmed logic for each rung is true. All retentive rungs will remain in their last

state. The MCR instruction establishes a zone in the user program in which all nonretentive
outputs can be turned off simultaneously. Therefore, retentive instructions should not
normally be placed within an MCR zone because the MCR zone maintains retentive
instructions in the last active state when the instruction goes false.

DIFFERENCE BETWEEN PLC AND PC:-

PLC:-

The input- output capabilities are large and can be used in various industrial processes.
The input-output cards are mounted on racks and are visible.

The noise is more.

The possibility of mishap exists as input-output cards are on the rack.

The connections are rugged, accessible and organized.

The processor architecture is simple.

It is used for controlling industrial processes and control logic programming.

The interface is by using simple devices such as indicators push buttons etc.

It uses ladder programming.

It has limited expandability.

Limited input-output capabilities interms of analog and digital cards which are suited for
laboratory purposes.

The input-output cards are mounted on board and are not visible.
Noise is less
No possibility of mishap
There exists a bunch of cables and very small room available for cable connections.
The processor architecture is complicated.
It is used for many advanced computation and high level programming language is used.
The easy and good interface is not possible.
It uses microprocessor programming
It has great flexibility and high reliability.
LADDER RUNG DIAGRAM:-

The main function of the ladder logic diagram program is to control outputs based on input
conditions. This control is accomplished through the use of what is referred to as a ladder
rung. In general, a rung consists of a set of input conditions, represented by contact
instructions, and an output instruction at the end of the rung, represented by the coil
symbol (Fig. given below).

[(AB) + D] C = Output

— Bit in memory Bit in memory
an is TRUE if

X \

Ls_1 SOL_S
= = =]
The EXAMINE |F CLOSED instruction is true,
making the rung true.

Bit in memory Bit in memory
LS_1 \
continuity and to energize the output. - SOL_S
—
The EXAMINE IF CLOSED instruction is false,
resulting in a false rung.

Ladder rung

Each contact or coil symbol is referenced with an address number that identifies what is
being evaluated and what is being controlled. The same contact instruction can be used
throughout the program whenever that condition needs to be evaluated.

For an output to be activated or energized, at least one left-to-right path of contacts must
be closed. A complete closed path is referred to as having logic continuity.

When logic continuity exists in at least one path, the rung condition is said to be TRUE.
The rung condition is FALSE if no path has continuity.

During controller operation, the processor determines the ON/OFF state of the bits in the
data files, evaluates the rung logic, and changes the state of the outputs according to the
logical continuity of rungs. More specifically, input instructions set up the conditions
under which the processor will make an output instruction true or false.

These conditions are as follows:

1. When the processor finds a continuous path of true input instructions in a rung, the

OUTPUT ENERGIZE [OTE] output instruction will become (or remain) true. We
then say that rung conditions are TRUE.

When the processor does not find a continuous path of true input instructions in a
rung, the OTE input instruction will become (or remain) false. We then say that
rung conditions are FALSE.

TIMER:-

All PLC’s have timer instructions. Timers are output instructions that are internal to the

programmable logic controller. Timers provide timed control of the devices that they activate or
de-activate.

Basic functions of timer
e Timers are used to delay an action.
e Timers are used to run an operation for a predetermined period of time.

e Timers are also used to record the total accumulated time of continuous or intermediate
events.

Timer’s Instructions:-

Timers consists of following parts: timer address, preset value, timer base, and accumulated value,
as shown in figure below.

TON
Timer On Delay _(EH)_

Timer T4:2
Timer Base 1.0

Preset 200< —(DN)_

Accum 0<

In the above figure, term instruction name is timer on delay (TON), timer base is 1.0 seconds,
timer address is T4:0, accumulated value of zero (0) and a preset value of 200. Each timer
instruction has three very useful status bits. These bits are timer enable (E N), timer timing (TT),
and timer done (DN). There are 3 types of timers: On- delay timer, Off-delay timer, and retentive
timer.

On delay timer:-

e Use this instruction to program a time delay after instructions become true.

e On — delay timers are used when an action is to begin a specified time after the input
becomes true. For example, a certain step in the manufacturing is to begin 45 seconds after

a signal is received from a limit switch. The 45- seconds delay is the on-delay timers preset
value.

Off- delay timer:-

e Off- delay timer instructions is used to program a time delay to begin after rung input goes
false.
As an example, when an external cooling fan on a motor is provided, the fan has to run all
the time the motor is running and also for certain time (say 10min) after the motor is turned
off. This is a ten minute off- delay timer. The ten-minute timing period begins as soon as
the motor is turned off.

Retentive timer:-

e Retentive timer is a timer which retains the accumulated value in case of power loss,
change of processor mode or rung state going from true to false (rung state transition).

e Retentive timer can be used to track the running time of a motor for its maintenance
purpose. Each time the motor is turned off, the timer will remember the motor’s elapsed
running time. The next time the motor is turned on, the time will increase from there. This
timer can be reset by using a reset instruction.

Reset:-

e This instruction is used to reset the accumulated value of counter or timer.
e [tis used to reset a retentive timer’s accumulated value to zero.

A typical timer element:-
A timer element is made up of three 16 bit words:

e Word 0: 3 status bits (EN, TT, DN).
e Word 1: Preset values.
e Word 2: Accumulated value.

EN | TT DN Reserved Bits

Preset Value

Accumulated Value

COUNTER:-

A counter is a simple device intended to do one simple thing-count. Every PLC has counter
instructions. Using counters sometimes be little challenging because many manufacturers seem to
use them different way. In other words, the instruction symbol used and method of programming
will change for different manufacturers.

A typical counter counts from 0 up to a predetermined value, called the “preset” value.
For example, if you wanted to count from certain value, say from 0 to 50, you would be counting

up using a count-up or up-counter. Here, the number “50” is the predetermined value, which is
nothing but preset value. The current count or accumulated count is called as the “accumulated
value”. If our counter had counted 25 pieces that had passed on the conveyor, the accumulated
count would be 25. When all 50 pieces had passed on the conveyor, the preset value and counter
accumulated value would be equal. At this point the counter would signal other logic within the
PLC program that the batch of 50 was completed and it should now take some action. The next
action the PLC has to take is to move the box containing 50 parts on to the next station for carton

sealing. To start counting the next batch, a reset instruction would be used to reset the counter’s
accumulated value back to zero.

The fig below shows an up-counter, counting from 0 to 50.

— CTU
Count-Up
Counter
Preset
Accum

The fig below shows a down-counter, counting from 50 to 0.

CTD
Count-Down
Counter
Preset
Accum

PLC Counter Instructions

Instruction This instruction is Functional
used to description

An operator interface display shows the
Count Down Count down from a desired operator the mumber of parts
value to zero remaining to be made for a lot of,say 50
parts ordered.

Counting the number of parts
produced during a specific work shift
or batch. Also counting the number of

rcjects from a batch,

Count Up Count from zero up to a
desired value

Most fixed programmable logic
controllers have a high-speed set of
High-speed Count input pulses that are input points that allow interface to

Counter too fast,from normal input high-speed inputs. Signals from an
points and modules incremental encoder would be a typical
high-speed input.

Counter Reset To resel a counter or timer Used to reset a counter to zero so that
another counting sequence can begin.

As for explanation, let us take ALLEN-BRADELY counters:

In Allen-bradely counter, the default counter file is file 5. The counter data is stored in counter
file. Each counter consists of three 16-bit words and is known as “counter element”. In a single
processor file, there can be many counter files. Any data file, which is greater than file 8 can be
assigned as an additional counter file. Each counter file can have up to 256 counter elements. A
counter instruction is one element. A counter element is made up of three 16-bit words. Thus, the
counter instruction contains the three parts i.e. word0, word1 and word?2.

Word zero is for status bits. Status bits include CU, CD, DN, OV, UN, and UA. Along
with their associated instructions.

Word one is for the preset value.
Word two is for accumulated value.

un|u. Reserved Bits

Preset Value

Accumulated Value

Addressing a counter

1) To address the counter as a unit the addressing format used is C5:4.
Where, C= C identifies this as a counter file.
5= This is counter file 4 which is default. Any unused file from 10 to 255 can be assigned to
counters.
:4= The colon used here is called the file separator. It separates the file, file 5, from the specific
counter, in this case, counter 4 in counter file 5.
2) To address the counter 14’s accumulated value, the address used is C5:14.ACC.
Where, C= C identifies this as a counter file.
5= This represents the counter file 5.

:14= The colon is called the file separator. The colon separates the file, file 5, from the
specific counter; in this case, counter 14 in counter file 5.

. = The point is called the word delimiter. The word delimiter is used to separate the
counter number, called the structure, from the sub element. The sub element is ACC for the
accumulated value. Similarly, preset value can be accessed as C5:14.PRE.

The addressing format of counter status bits is as follows:
e (C5:14/DN is the address for counter file 5, counter 14’s done bit.
e (5:14/CU is the address for counter file 5, counter 14’s count-up-enable bit.
e (C5:14/EN is the address for counter file 5, counter 14’s enable bit.

Working of a counter:-

e A counter instruction is always an output instruction. The counter instruction counts each
time the input logic changes the rung state from false to true. This input logic can be signal
from an external device, for e.g. limit switch or sensor, or a signal from internal logic.
Every time the counter instruction sees a false-to-true rung transition, a count-up counters
accumulated value is incremented by one.

The working of down-counter is little different. Each time when count-down counter sees a
false-to-true rung transition, its accumulated value is decremented by one. Since the
accumulated value gets decremented by 1 when each time the input logic changes the rung
state from false to true, the accumulated value must be chosen as the starting point of the
count.

Counters are retentive in nature. The counter will retain its accumulated value or the on or
off status of the done, overflow and underflow bits through a power loss.

The count-up instruction

—— CTU
1:1/0 Count-up
} Counter
Preset
Accum

C5:1/CU
1
I

C5:1/DN
1
I

C5:1/0V
1 |
LI |

The count-up instruction is used if we want a counter to increment one decimal value each time it
register a rung transition from false to true. Each time input 1:1/0 has a transition from off to on,
counter C5:1 will increment its accumulated value by one decimal value. The count-up-enabled
bit, on rung 001 is set when the rung conditions are true, or enabled. In rung 002, the done bit,
DN, is set when the accumulated value is equal to or greater than the preset value. In the event of
wrap from +32,767 to -32,768, the accumulated value becomes less than the preset value and the
done bit will not be reset. In rung 003, the count-up overflow bit, OV, is set whenever the count-
up counters accumulated value wraps from +32,767 to -32,768.

The count-down instruction

This instruction is used when we want to count down over the range of +32,767 to -32,768.
Accumulated value will be decremented by one count, each time the instruction sees a false-to-

true transition. Count-down instruction has many applications, for example: if we want to display
the remaining number of parts to be filled for a specific order say 50 parts, then, a count-down
instruction can be used. In this example, the accumulated value will be set as 50 and the preset
value will be 0. Each time a part is completed and passes the sensor, the accumulated value will be
decremented by one decimal value, as shown in the figure below.

CTD
Count-down —Ccm——

Counter C5:0
Preset 0=

Accum S0= _(I:N)_

O2/0
r

N

INot completed
2/
' 4

C
Camplated

	address up to 64KB of external memory.

	program to modify or replicate a program.

	/

	both buses.

	/

	MEMORY ORGANIZATION

	PROGRAM MEMORY/ROM MEMORY

	come in an EPROM version or EEPROM version or OTP or FLASH type.

	/

	A REGISTER (ACCUMULATOR)

	B REGISTER

	R REGISTERS (R0-R7)

	PROGRAM STATUS WORD (PSW) REGISTER

	DATA POINTER REGISTER (DPTR)

	STACK POINTER (SP) REGISTER

	P0, P1, P2, P3 - INPUT/OUTPUT REGISTERS

	MIPS.

	/

	INPUT/OUTPUT PORTS (I/O PORTS)

	PORT 0

	PORT 1

	PORT 2

	PORT 3

	PIN'S CURRENT LIMITATIONS

	8051 MICROCONTROLLER INTERRUPTS

	Instruction Set of 8051 µc

	Types of instructions

	Arithmetic instructions

	Branch Instructions

	Data Transfer Instructions

	Logic Instructions: Logic instructions perform logic operations upon corresponding bits of two registers. After execution, the result is stored in the first operand.

	Bit-oriented Instructions

	Description of all 8051 instructions

	COUNTERS AND TIMERS

	TIMER T0

	TMOD REGISTER (TIMER MODE)

	TIMER 0 IN MODE 0 (13-BIT TIMER)

	TIMER 0 IN MODE 1 (16-BIT TIMER)

	TIMER 0 IN MODE 2 (AUTO-RELOAD TIMER)

	TIMER 0 IN MODE 3 (SPLIT TIMER)

	TIMER CONTROL (TCON) REGISTER

	HOW TO USE THE TIMER 0 ?

	HOW TO 'READ' A TIMER?

	TIMER 0 OVERFLOW DETECTION

	HOW TO MEASURE PULSE DURATION?

	HOW TO COUNT UP PULSES?

	TIMER 1

	UART (UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER)

	SERIAL PORT CONTROL (SCON) REGISTER

	MODE 1

	MODE 2

	MODE 3

	BAUD RATE

	TIMER 1 AS A CLOCK GENERATOR

	MULTIPROCESSOR COMMUNICATION

	Description

