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Bending Stress 

When a beam is loaded with external loads, all the sections of the beam will experience bending 

moments and shear forces. The shear forces and bending moments at various sections of the 

beam can be evaluated as discussed in the earlier chapter. In this chapter, the bending and 

bending stress distribution across a section will be dealt with.  

Some practical applications of bending stress shall also be dealt with. These are    

1. Moment carrying capacity of a section 

2. Evaluation of extreme normal stresses due to bending 

3. Design of beam for bending 

4. Evaluation of load bearing capacity of the beam 

The major stresses induced due to bending are normal stresses of tension and compression.  But 

the state of stress within the beam includes shear stresses due to the shear force in addition to the 

major normal stresses due to bending although the former are generally of smaller order when 

compared to the latter.  

 

Simple Bending or Pure Bending  

A beam or a part of it is said to be in a state of pure bending when it bends under the action of 

uniform/constant bending moment, without any shear force.  

Alternatively, a portion of a beam is said to be in a state of simple bending or pure bending when 

the shear force over that portion is zero. In that case there is no chance of shear stress in the 

beam. But, the stress that will propagate in the beam as a result will be known as normal stress.  
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However, in practice, when a beam is subjected to transverse loads, the bending moment at a 

section is accompanied by shear force. But, it is generally observed that the shear force is zero 

where the bending moment is maximum. Therefore, the condition of pure bending or simple 

bending is deemed to be satisfied at that section. 

Examples of pure bending are – 

1. Bending of simple supported beam due to end coupling (Uniform pure bending) 

2. Bending of cantilever beam with end moment (Uniform pure bending) 

3. Bending of the portion between two equal point loads in a simple supported beam with 

two-point loading (Non-uniform pure bending) 

The four point bending of the simply supported beam 
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Theory of Simple Bending  

The theory which deals with the determination of stresses at a section of a beam due to pure 

bending is called theory of simple bending. In this chapter, bending of straight homogeneous 

beams of uniform cross sectional area with vertical axis of symmetry shall be considered. The 

application of this theory can be extended to beams with two or more different materials as well 

as curved beams. 

Several cross-sections of beams satisfying the above conditions are shown in the Fig. 5.  

A beam of rectangular cross-section with typical loading condition is shown in the Fig. 6. Also 

shown in the Fig. 7 is the three-dimensional beam with longitudinal vertical plane of symmetry, 

with the cross-section symmetric about this plane. It is assumed that the loading and supports are 
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also symmetric about this plane. With these conditions, the beam has no tendency to twist and 

will undergo bending only. 

 

A beam subjected to sagging moment is shown in the Fig. 8. The beam is imagined to be 

consisting of a number of longitudinal fibres; one such fibre is is shown in colour. It is obvious 

that the fibres near the upper side of the beam are compressed; hence an element in the upper 

part is under compression. The fibres at the bottom side of the beam get stretched and, hence, the 

elements on the lower side are subjected to tension. Somewhere in between, there will be a plane 

where the fibres are subjected to neither tension nor compression. Such a plane is termed as 

neutral surface or neutral plane.  

In the conventional coordinate system attached to the beam in Fig. 8, x axis is the longitudinal 

axis of the beam, the y axis is in the transverse direction and the longitudinal plane of symmetry 

is in the x- y plane, also called the plane of bending. 

Neutral Surface 

The longitudinal surface of a beam under bending which experiences neither tension nor 

compression is known as neutral surface. There is only one neutral surface in a beam. 
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Neutral Axis 

The line of intersection of transverse section of beam with the neutral surface is known as neutral 

axis. In other words, the line of intersection of the longitudinal plane of symmetry and the neutral 

surface is known as neutral axis. Neutral axis experiences no extension or contraction. 
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Axis of beam 

The intersection of the longitudinal plane of symmetry and the neutral surface is called the axis 

of the beam. In other words, the line through the centroid of all the cross-sections of the beam is 

known as axis of the beam. 

Assumptions for theory of pure bending: 

 The assumptions made in the theory of simple bending are as follows:  

1. The material of the beam is perfectly homogeneous (i.e. of the same kind throughout) and 

isotropic (i.e. of same elastic properties in all directions).  

2. The material is stressed within elastic limit and obeys Hooke's law.  

3. The value of modulus of elasticity for the material is same in tension and compression. 

4. The beam is subjected to pure bending and therefore bends in the form of an arc of a 

circle.  

5. The transverse sections, which are plane and normal to the longitudinal axis before 

bending, remain plane and normal to the longitudinal axis of the beam after bending.  

6. The radius of curvature of the bent axis of the beam is large compared to the dimensions 

of the section of beam.  

7. Each layer of the beam is free to expand or contract independently.  

8. The cross-sectional area is symmetric about an axis perpendicular to the neutral axis. 

Explanation of the assumptions 
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According to assumption No. 5, plane section ABCD before bending as shown in Fig. 10 remains 

plane after bending as shown by A’B’C’D’. This assumption, also known as Bernoulli’s 

assumption, is perfectly valid for beams with pure bending. If there is any shear along with the 

bending, the shear deformation distorts the plane and A’B’ will not remain plane. However, for 

beams with smaller depth (d<1/10th span) shear deformation is small and this assumption is not 

much affected. In case of deep beams, with shear forces, this assumption fails.  

Assumption No. 6, the radius of curvature is large compared to depth is valid if deflections are 

less than 1/10th to 1/5th of depth of beam. Therefore, the theory derived with this assumption 

may be called small deflection theory.  

 

Relationship between Bending Stress and Radius of Curvature 

Consider a part of beam ABCD of length dx subjected to pure bending of bending moment M as 

shown in the Fig. 11. As the beam is subjected to pure bending, it bends into a circular arc. 

The topmost layer AB is contracted to A’B’. The layer PQ below it is compressed to a lesser 

degree than it. The bottom most layer CD is elongated to C’D’. All other layers are subjected to 

different degrees of elongation or contraction degrees depending upon their position. However, 

one layer MN has not suffered any change in its length. This layer is called the neutral layer or 

neutral surface.  

Let dθ be the angle formed by the planes A’C’ and B’D’ and R be the radius of the neutral layer. 

Consider a fibre PQ at a distance of y from the neutral layer. 

Original length of the fibre, PQ = dx = Rdθ 

After deformation, the length of the fibre is compressed to P’Q’. 



Bending Stress in Beams 
 

Dr. S. K Nayak, PhD  8 
 

 

Decrease in length of the fibre PQ QPPQ     

               dyRdR    

            dy   

Let the projection of C’ A’ and D’ B’ meet at O. 

Strain in the fibre PQ,       
length Original

lengthin  Decrease
    

                                                
R

y

dR

dy





  

Let σ be the stress in the fibre PQ. 

Then,                                          
E


  , where E is the Modulus of elasticity of the material. 

                                              
R

y

E



   

                                              y
R

E
    
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Hence, the stress intensity in any fibre is proportional to the distance of the fibre from the neutral 

layer.                                                                

Position of Neutral Axis 

Consider a beam of arbitrary cross-section as shown in the Fig. 12. Consider an elemental are δa 

at a distance y from the neutral axis. Let the bending stress on the element be σ.  

 

Force on the elemental area a  

Force over the entire cross-section of the beam  a   

We also know, y
R

E
   

Substituting the value of σ, we get 

Force over the entire cross-section of the beam   ay
R

E
ay

R

E
   

Since there is no axial force on the beam, from equilibrium consideration, the above axial force 

should be zero. 

Hence,   0 ay
R

E
   

Since, 
R

E
 is constant for a given section, we have 0δ  ay  

We know,            ayyA δ
 

Where, A is the area of cross-section of the beam. 

So,                0yA
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                             or       0y    

y is the distance of the centroid from the neutral axis. Hence, the neutral axis of the section 

coincides with the centroid of the section. Thus, to locate the neutral axis of a section, the 

centroid of the section should be determined. The line passing through the centroid, parallel to 

the plane of bending is the neutral axis of the beam section. 

Relationship between Moment and Radius of Curvature 

Consider an elemental area δa from the neutral axis of a beam section as shown in the Fig. 13.  

The stress on the elemental area, y
R

E
   

Force on the elemental are ay
R

E
a δδ   

Moment of resistance offered by this elemental area about the neutral axis 

    ay
R

E
yay

R

E
δδ 2








   

Total moment of resistance, M offered by the cross-sectional area of beam, 

         ay
R

E
M δ2  

         ay
R

E
M δ2  

But,  ay δ2  is the moment of inertia I of the beam section about the neutral axis. 

            I
R

E
M   

    
R

E

I

M
  

We have earlier seen that, 
R

E

y



 

Combining the two equations, we get 

    
R

E

yI

M



, which is known as the bending equation. 
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Where,   M = bending moment at a section, 

     I = moment of inertia of the beam section, 

    σ = stress at any layer of the beam, 

    y = distance of the layer from the neutral axis, 

   E = Young’s Modulus and 

   R = radius of curvature. 

M and I are constants for a particular beam section. Hence, σ varies proportionally to the distance 

y. So, maximum stress occurs at extreme fibres. The stress distribution will be triangular as 

shown in the Fig. 13. 

 

The formula for flexural stress derived as above applies only to cases where the material behaves 

elastically. The important concepts used in deriving the flexural formula may be summed up as 

follows. 
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1. Strains in different layers of beam vary linearly with their distances from the neutral axis. 

2. Properties of materials are used to relate strain and stress. 

3. Equilibrium conditions are used to locate the neutral axis and to determine the internal 

stresses.   

The internal bending moment developed by the induced flexural stresses due to bending at a 

section is known as moment of resistance of the section. For equilibrium of the section, the 

moment of resistance of a section should be equal to or greater than the applied external moment. 

Flexural rigidity:  

From equation of flexure, we have  

R

E

I

M
  

MREI   

EI is known as flexural rigidity. Flexural rigidity is the measure of flexural strength of a beam 

section. Higher is the flexural rigidity better is the flexural strength. It depends upon the material 

as well as the geometric property of the section. Elastic modulus, E reflects the material 

character and moment of inertia, I reflects the geometric characteristic 

Economical section  

In a beam of rectangular or circular section, the fibres near neutral axis are under-stressed 

compared to those at the top and bottom. As a result, a large portion of the beam cross-section 

remains under-stressed and under utilized for resisting flexure or bending.  
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The expression I
y

M


 indicates that moment of resistance of a section can be greatly 

increased by increasing the moment of inertia by rearranging or redistributing the area while 

keeping the cross-sectional area and the depth of the beam unchanged. This can be achieved by 

changing the geometry of the section so as to spread the area farther from the neutral axis.  

In order to increase the moment of resistance to bending of a beam section, it is advisable to use 

sections which have large area away from the neutral axis. Hence, I-section and T-sections are 

preferable to rectangular section. 

Sections of different geometry, (i) rectangular section and (ii) I-section of equal cross-sectional 

area and same depth are shown in the Fig. 15. 

Moment carrying capacity of a section: 

From equation of flexure, we have 

    
I

M

y



 

    y
I

M
  

It is obvious that bending stress is maximum on the extreme fibre at the top and bottom of the 

beam where y is maximum. In design of beam, the extreme fibre stress should not be allowed to 

exceed the allowable or permissible stress of the material. If allow  is the allowable stress for 

bending, then for safe design 

    allow max  

                                           allowy
I

M
max  

If M is taken as the maximum moment carrying capacity of the section, 

       allowy
I

M
max  
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               allow
y

I
M 

max

  

The moment of inertia I and the extreme fibre distance ymax are the geometrical properties of the 

section. The ration of the moment of inertia and the extreme fibre distance  
maxyI  for a given 

cross-section of beam is constant and is known as section modulus (Z). Thus the moment 

carrying capacity of a beam is given by 

     ZM allow  

If allow  in tension and compression are same, doubly symmetric section is selected. Doubly 

symmetric section means a section which is symmetric about the vertical as well as neutral axis.  

If allow  in tension and compression are different, un-symmetric cross-section is selected such 

that the distance to the extreme fibers are nearly the same ratio as the respective allowable 

stresses. In the latter case, the moment carrying capacity in tension and compression are found 

separately and the smaller one is taken as the moment carrying capacity of the section. 

Section Modulus of Sections of Standard Geometry 

1. Rectangular section 

Let us consider a rectangular section of width b and depth d as shown in the Fig. The neutral axis 

coincides with the centroidal axis of the beam.  

 

Moment of inertia about the neutral axis, 
12

3bd
I   

Distance of outermost fibre from the neutral axis, 
2

max

d
y   

Section modulus,    
maxy

I
Z 

d

bd 2

12

3

   
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                   2

6

1
bd  

Let   is the maximum bending stress developed at the outermost layer. 

Moment of resistance, 2

6

1
bdZM     

2. Hollow Rectangular section 

Let us consider a hollow rectangular section of size DB  with a symmetrical opening db as 

shown in the Fig. 17. 

 

 

Moment of inertia about the neutral axis, 
1212

33 bdBD
I   

Distance of outermost fibre from the neutral axis, 
2

max

D
y   

Section modulus,    
maxy

I
Z 

D

bdBD 2

12

33




   

 

        
 

D

bdBD 33

6

1 
  

Let   is the maximum bending stress developed at the outermost layer. 

Moment of resistance, 
D

bdBD
ZM

)(

6

1 33 
   

3. Circular section 

Let us consider a circular section of diameter d as shown in the Fig. 18. 
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Moment of inertia about the neutral axis, 
64

4d
I


  

Distance of outermost fibre from the neutral axis, 
2

max

d
y   

Section modulus,    
maxy

I
Z 

d

d 2

64

4




  

        
32

3d
  

Let   is the maximum bending stress developed at the outermost layer. 

Moment of resistance, 
32

3d
ZM


     

4. Hollow Circular section 

Let us consider a hollow circular section of external and internal diameter D and d respectively 

as shown in the Fig. 19. 

 

Moment of inertia about the neutral axis,  44

64
dDI 


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Distance of outermost fibre from the neutral axis, 
2

max

D
y   

Section modulus,    
maxy

I
Z   

D
dD

2

64

44 


  

         44

32
dD

D



 

Let   is the maximum bending stress developed at the outermost layer. 

Moment of resistance,  44

32
dD

D
ZM 


   

Design of beam for bending 

Design of beam involves the determination of the size (cross-section) of the beam for given 

loading condition. The maximum bending moment of the beam is determined from the loading 

condition. Given the bending moment and permissible bending stress of the material of the beam, 

the section modulus of the beam is determined from the expression of bending stress. Once the 

section modulus is known, width and depth can easily determined assuming the depth to width 

ratio.   

Beam of uniform strength 

In practice, a beam of uniform cross section is designed for moment of resistance same as the 

maximum bending moment that the beam is supposed to carry. Hence, the material in all sections 

except the section of maximum bending moment remains under-stressed and underutilized. 

Although practical, such a beam is uneconomical. Ideally, a beam of varying cross-section 

should be designed so that all sections attain the maximum permissible stress simultaneously. A 

beam in which permissible stress at all sections is reached simultaneously under a given loading, 

is called a beam of uniform strength.  

A beam of uniform strength can be obtained in different ways 

a) By varying the width of beam and keeping the depth constant 

b) By varying the depth of beam and keeping the width constant 

c) By varying both width and depth  

By varying the width of beam and keeping the depth constant 
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Derive the formula for cross section of a rectangular beam of uniform strength for a cantilever 

beam of length L carrying concentrated load at free end by keeping the depth constant.  

Consider a cantilever beam of length L and uniform depth d carrying a concentrated load W at its 

free end as shown in the Fig. 20.  Let the width varies from a minimum at its free end to a 

maximum of b near the fixed end.    

It is obvious that the bending moment varies from minimum zero at the free end to maximum at 

WL at the fixed support.  

Bending moment at any section at a distance of x from the free end, 

     WxM    

 

From expression of flexure, we xhave 

     ZM   

     ZWx   

Where σ is the maximum stress at every section of the beam. 

If bx width at any section XX, then 
6

2db
Z x  
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22

6

6

db

Wx

db

Wx

xx

   

Similarly, maximum stress at support, 
2

6

bd

WL
  

Equating equation () and (), we have  

       
22

66

bd

WL

db

Wx

x

  

            









L

x
bbx  

At free end, i.e., x = 0, the width of beam 00 b  

At the fixed end, i.e., x = L, the width b
L

L
bbL 








  

By varying the depth of beam and keeping the width constant 

Consider a cantilever beam of length L and uniform width b carrying a concentrated load W at its 

free end as shown in the Fig. 20.  Let the depth varies from a minimum at its free end to a 

maximum of d near the fixed end.   
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It is obvious that the bending moment varies from minimum zero at the free end to maximum at 

WL at the fixed support.  

Bending moment at any section at a distance of x from the free end, 

     WxM    

From expression of flexure, we xhave 

     ZM   

     ZWx   

Where σ is the maximum stress at every section of the beam. 

If bx width at any section XX, then 
6

2

xbd
Z   

       
22

6

6

xx bd

Wx

bd

Wx
   

Similarly, maximum stress at support, 
2

6

bd

WL
  

Equating equation () and (), we have  

       
22

66

bd

WL

bd

Wx

x

  

         









L

x
dd x

 

At free end, i.e., x = 0, the depth of beam, 00 d  

At the fixed end, i.e., x = L, the depth, d
L

L
ddL 








  
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Numerical 

1. A rectangular beam of breadth 100 mm and depth 200 mm is simply supported over a span of 

4 m. The beam is loaded with an uniformly distributed load of 5 kN/m over the entire span. 

Find the maximum bending stresses. 

Solution: 

Breadth of the beam, b = 100 mm 

Depth of beam, d = 200 mm 

Moment of inertia,   4633 1067.66200100
12

1

12

1
mmbdI   

Span of beam, l = 4 m 

Uniformly distributed load, w = 5 kN/m 

Maximum bending moment at centre of beam, 
8

45

8

22 


wl
M  

              mmNMkN .10.10 7   

 

Neutral axis passes through the centroid of section. 

The distance of top and bottom fibre from the neutral axis, y = 100 mm 

Thus, maximum bending stress, 100
1067.66

10
6

7




 y
I

M
  
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           2/15 mmN  

2. A beam of I-section shown in Fig. 23 is simply supported over a span of 10 m. It carries a 

uniform load of 4 kN/m over the entire span. Evaluate the maximum bending stresses. 

Solution: 

Moment of inertia,    3333 600280660300
12

1

12

1
 bdBDI  

             4810474.21 mm   

Span of the beam, l = 10 m 

Uniformly distributed load, w = 4 kN/m 

 

Maximum bending moment at centre of beam, mkNM .50
8

104 2




  

              mmN.105 7   

Neutral axis passes through the centroid of I-section. 

The distance of top and bottom fibre from the neutral axis, y = 330 mm 
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Thus, maximum bending stress, 2

8

7

/68.7330
10474.21

105
mmNy

I

M





   

The bending stress at top and bottom fibres 28 /1068.7 mmN  

3. A beam of an I-section shown in Fig. 24 is simply supported over a span of 4 m. Find the 

uniformly distributed load the beam can carry if the bending stress is not to exceed 100 

N/mm2. 

Solution: 

Moment of inertia,    3333 260180300200
12

1

12

1
 bdBDI  

             461036.180 mm   

Maximum bending stress, σmax = 100 N/mrn2 

Span of beam, l = 4 m 

Extreme fibre distance, ymax = 150 mm 

 

Section modulus,  3
6

max

1242400
150

1036.180
mm

y

I
Z 


  

Maximum bending moment, 1242400100max  ZM   

        mmN.124240000  
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     mkN.24.124  

But             
8

2wl
M   

       
 
8

4
24.124

2



w

 

 mkNw /12.64
16

824.124



  

The maximum uniformly distributed load the beam can carry = 64.12 kN/m. 

4. A timber beam of rectangular section carries a load of 2 kN at mid-span. The beam is simply 

supported over a span of 3.6 m. If the depth of section is to be twice the breadth, and the 

bending stress is not to exceed 9 N/mrn2, determine the cross-sectional dimensions. 

Solution: 

Span of the beam, l = 3.6 m 

Uniformly distributed load, w = 2 kN 

Allowable bending stress, σallow = 9 N/mm2 

Maximum bending moment at centre of beam, mkN
WL

M .8.1
4

6.32

4



  

              mmN.108.1 6  

From the flexural relationship, we have  
allow

M
Z


  

          
9

108.1

6

1 6
2 
bd  

            
6

6
2 102.16

9

108.1



bd  

Depth of section is to be twice the breadth, i.e., d = 2b 

So, we have       62
102.12 bb   
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            6
6

3 103.0
4

102.1



b  

              mmb 94.64  

           mmd 886.129943.642   

Therefore, width of beam = 65 mm, and depth of beam = 130 mm 

5. A rectangular beam of width 200 mm and depth 300 mm is simply supported over a span of 5 

m. Find the safe uniformly distributed load that the beam can carry per metre length if the 

allowable bending stress in the beam is 100 N/mm2. 

Solution: 

Span of beam, l = 5 m 

Width Breadth of the beam, b = 100 mm 

Depth of beam, d = 200 mm 

Allowable bending stress, σallow = 100 N/mm2 

Section modulus,  3622 103300200
2

1

6

1
mmbdZ   

Moment of resistance of the beam, 6103100  ZM allow  

                                                             mkNmmN .300.10300 6 
 

Maximum bending moment at the centre of the beam,  

8

2wl
M   

                                                           
 
8

5
300

2



w

 

             mkNw .96
25

8300



  

So, the load that the beam can carry is 96 kN/m. 
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6. A rectangular beam of size 60 mm x 100 mm has a central rectangular hole of size 15 mm x 

20 mm. The beam is subjected to bending and the maximum bending stress is limited to 100 

N/mm2. Find the moment of resistance of the hollow beam section. 

Solution: 

External dimension of hollow rectangular beam: B = 60 mm, D = 100 mm 

Size of the central hole: b = 15 mm, d = 20 mm 

Moment of inertia of the hollow beam section,    3333 201510060
12

1

12

1
 bdBDI  

                     4610999.4 mm   

 

 

Extreme fibre distance, mmy 50
2

100
max   

Section modulus,  34
6

max

1098.9
50

10999.4
mm

y

I
Z 


  

Allowable bending stress, σallow = 100 N/mm2 

Moment of resistance, 41098.9100  ZM allow  

   mmN.1098.9 6  

 mmkN.98.9  
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7. Find the ratio of the dimensions of the strongest rectangular beam that can be cut from a 

circular log of wood of diameter D.  

Solution: 

Let b be the width and d the depth of the strongest rectangular beam section as shown in the Fig. 

26. 

From the geometry, we have 222 Ddb   

            222 bDd    

Section modulus of the rectangular section,  

              222

6

1

6

1
bDbbdZ   

      32

6

1
bbD   

Strongest section in bending should have largest section modulus.    

 

Hence,      03
6

1 22  bD
db

dZ
   

              223 Db   

    
3

D
b   
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And    
3

2
222 D

DbDd    

    D
D
















3

2

3

2 2

 

8. Two sections of same material; one of solid circular section and the other hollow circular 

section of internal diameter half the external diameter, have the same flexural strength. 

Which one of them is economical?  

Solution: 

Let    D = Diameter of solid circular section  

  D1 = Outer diameter of hollow circular section  

Inside diameter of hollow circular section, D2 = 0.5 D1 

 

 

Section modulus of solid section, 3

1
32

DZ


  

Section modulus of hollow section,     4

1

4

1

1

4

2

4

1

1

2 5.0
3232

DD
D

DD
D

Z 


 

              3

19375.0
32

D


 

Since both sections have same flexural strength, their section modulus should be equal. 

Hence,    3

1

3 9375.0
3232

DD 

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            3

1

3 9375.0 DD   

           
198.0 DD   

    2

1

2

1

2

2

2

2

1

2

5.0

4

4

section hollow of area sectional-Cross

section solid of area sectional-Cross

DD

D

DD

D

A

A

h

s











 

          

2

1

2

1

2

75.0

1

75.0 









D

D

D

D
 

            28.198.0
75.0

1 2
  

Since the sectional area of hollow section is less than that of solid section, for a given length of 

the beam, the weight of hollow section will be less. Hence hollow section is economical. 

9. A cantilever of 2 m length and square section 200 mm x 200 mm, just fails in bending when a 

point load of 12 kN is placed at its free end. A beam of rectangular cross section of same 

material, 150 mm wide and 300 mm deep, is simply supported over a span of 3 m. Calculate 

the maximum concentrated load that the beam can carry at its centre without failure. 

Solution: 

The two beams with loading conditions are shown in the Fig.  

 

Maximum bending moment in cantilever beam, mkNM c .24212   

                 mmN.1024 6  
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Let σallow is the stress at which the beam fails, allowallowc bdZM  2

6

1
  

          62 1024200200
6

1
 allow  

                          2/18 mmNallow    

Let W kN be the maximum central concentrated that the beam can carry without failure. 

Maximum bending moment at the mid span,  mkNW
WWL

M s .75.0
4

3

4



  

      mmNW .1075.0 6  

Moment of resistance of simply supported beam section,  

ZM allowR  2300150
6

1
18   

  mmN.105.40 6  

Equating maximum bending moment (Ms) to moment of resistance (MR), we have 

     66 105.401075.0  W  

               kNW 54  

10. For a given sectional area, compare the moments of resistance of circular and square section.  

Solution: 

Let the diameter of the circular section be d. 

Area of circular section, 2

4
dA


  

Section modulus, 3
32

dZC


  

Let the square section has side of a. 

Since both circular and square section have the same area, 

     22

4
da


  

     da
2


  
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Section modulus of square section, 3
3

486
d

a
Z S


  

Ratio of Section modulus of square section and circular section, 

     18.1

32

48

3

3



d

d

Z

Z

C

S





 

Hence, flexural strength of square section is 1.18 times more than that of circular section of equal 

area. 

11. Compare the moments of resistance of a square section of given material when the beam 

section is placed such that (i) two sides are parallel and (ii) one diagonal vertical.  

Solution: 

Square section with two sides horizontal is shown in the Fig. 29(a). 

Section modulus of square section with two sides horizontal, 
6

3

1

a
Z    

Let σ is the permissible flexural stress. 

Moment of resistance, 
6

3

11

a
ZM


   

 

Square section with on diagonal vertical is shown in the Fig. 29(b). 

Moment of inertia about the neutral axis, i.e., the diagonal of the square section = Twice the 

moment of inertia of triangle of base a2  and height 2/a . 
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1212

2
2

2
4

3

2

a

a
a

I 










  

Extreme fibre distance,           
22

2
max

aa
y   

Section modulus of square section with one diagonal vertical,  

12

2

2

12
3

4

max

2

2

a

a

a

y

I
Z    

Moment of resistance,             
12

2 3

22

a
ZM


   

Ration of the moments of resistance of section in two different positions, 

     414.12

12

2

6
3

3

2

1 
a

a

M

M





 

12. Three beams of same material with circular, square and rectangular cross sections have the 

same length and are subjected to same maximum bending moment. The depth of the 

rectangular section is twice the width. Compare their weights.    

Solution: 

Fig. 30 shows three different sections, circular, square, and rectangular of beam. 
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Let   Diameter of circular section = d, 

  Side of square section = a, and 

  Width and depth of rectangular section are b and 2b respectively. 

As beams of three different cross sections of equal allowable stress are subjected same maximum 

bending moment, they must have same strength. Hence, all sections should have equal section 

modulii.  

Section modulus of circular section,  
32

3d
ZC


  

Section modulus of circular section,  
6

3a
Z S   

Section modulus of circular section,  
  3

2

3

2

6

2
b

bb
Z R   

We have   3
33

3

2

632
b

ad



 

  abad 6299.0  and193.1   

 

2

2

2

4

4

section square of Area

sectioncircular  of Area

beam square ofWeight 

beamcircular  ofWeight 










a

d

a

d




 

                    118.1193.1
4

3



 

2

2

2

2
2

section square of Area

sectionr rectangula of Area

beam square ofWeight 

beamr rectangula ofWeight 










a

b

a

b
 

               7936.06299.02
2
  

13. A beam of symmetric I-section has flange size 100 mm x 15 mm, overall depth 250 mm. 

Thickness of web is 8 mm. Compare the flexural strength of this section with that of a beam 

of rectangular section of same material and area. The width of rectangular section is two-

third of its depth.  

Solution: 

The I-section and the rectangular section of equal area are shown in the Fig. 31. 
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Area of I-section,     247608220151002 mmAI   

Moment of inertia of I-section, 4
33

8574.4
12

22092

12

250100
mmI I 





  

Section modulus of I-section, 
125

108574.4 7

max




y

I
Z I

 

        3388592mm  

 

Let the depth of the rectangular section = d mm 

Width of the rectangular section, db
3

2
  

Area of the rectangular section, 2

3

2

3

2
dddAR   

Since the area of two sections are equal, 4760
3

2 2 d  

               mmd 50.84  

and                        mmb 33.5650.84
3

2
  

Section modulus of rectangular section, 
 
6

50.8433.56

6

22 


bd
Z R  

                 367035mm  
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 80.5
67035

388592

sectionr rectangula ofstrength  Flexural

section-I ofstrength  Flexural


R

I

Z

Z
 

14. A cast iron beam of an I-section with top flange 80 mm x 40 mm, bottom flange 160 mm x 40 

mm and web 120 mm x 20 mm. If the tensile stress is not to exceed 30 N/mm2 and 

compressive stress 90 N/mm2, what is the maximum uniformly distributed load the beam can 

carry over a simply supported span of 6 m, if the bottom flange is in tension? 

Solution: 

The cross section of the beam is as shown in the Fig. 32. 

Let y is the distance of the centroid (neutral axis) from the bottom fibre (tension fibre).  

 

                              
A

ya
y

ii


1204080120204080

1804080100120202040160




  

                                 mm67.78
12000

944000
  

Moment of inertia,      

   

 23

2323

67.7818040804080
12

1

67.781001202012020
12

1
2067.784016040160

12

1



I

 

              460138670mm   
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Tension occurs at the bottom and compression at the top. 

Bottom extreme fibre distance (large flange, tension flange), mmyt 67.78  

Top extreme fibre distance (compression flange), mmyc 33.12167.78200   

Moment of resistance from tensile strength consideration,  

        mmN
y

I

t

allow .81.22933266
67.78

60138670
30    

               mkN.933.22  

Moment of resistance from compressive strength consideration,  

        mmN
y

I

c

allow .65.44609579
33.121

60138670
90    

               mkN.609.44  

Hence, actual moment resistance is smaller of the above two, i.e., 22.993 kN 

Maximum bending moment, w
wwl

5.4
8

6

8

22




    

Equating the maximum bending moment with the moment of resistance, we have 

    933.225.4 w  

          mkNw /096.5  

Alternatively,  

Suppose the maximum stress in compression at the top is 90 N/mm2.  

Corresponding maximum stress in tension at the bottom, 

     90
33.121

67.78
 c

c

t

t
y

y
  

          2/30355.58 mmN     (Not possible) 

But the permissible tensile stress is only 30 N/mm2. Hence, let the maximum tensile stress be 

allowed to reach 30 N/mm2. 
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Corresponding maximum compressive stress at the top, 

              30
67.78

33.121
 t

t

c

c
y

y
  

            )(/90/268.42 22 OKmmNmmN   

Hence, the beam will fail in tension at the bottom flange. 

Moment of resistance from tensile strength consideration,  

                     mmN
y

I

t

allow .81.22933266
67.78

60138670
30    

                mkN.933.22  

Maximum bending moment, w
wwl

5.4
8

6

8

22




    

Equating the maximum bending moment with the moment of resistance, we have 

    933.225.4 w  

          mkNw /096.5  

15. Two wooden planks 60 mm x 160 mm each are connected together to form a cross section of 

a beam as shown in the Fig. If a sagging bending moment of 3500 N.m is applied about the 

horizontal axis, find the stresses at the extreme fibre of the cross-section. Also calculate the 

total tensile force on the cross-section.  
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Solution: 

Let us locate the centroid and hence the neutral axis, and find moment of inertia of the section. 

Consider the bottom of T-section as the reference axis for location of centroid. The T-section 

consists of two components, web and flange. 

The relevant calculations are shown in the table. 

Distance of the centroidal axis GG from the bottom edge, 

    mm
a

ay
y 94.135

19200

2610000





 

Moment of inertia at the bottom edge,   2ayII Selfb  

            4666 1036.431104081036.23 mm  

 

 

But,       2yaII Gb   

      262 94.135192001036.431   yaII bG  

        488.76190074 mm  

Let the maximum tensile and compressive stresses at extreme fibres be σtmax and σcmax 

respectively. 
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Components Area a 

(mm2) 

Centroidal 

distance from 

the bottom 

edge, y 

(mm) 

ay 

(mm3) 

 

ay2 

(mm4) 

ISelf 

(mm4) 

Web 9600 80 786000 61.44 x 106 

6
3

1048.20
12

16060



 

Flange 9600 190 1824000 346.56 x 106 

6
3

1088.2
12

60160



 

Total 19200  2610000 408 x 106 23.36 x 106 

 

We have,    94.135
88.76190074

10003500
max 


 tt y

I

M
  

             2/245.6 mmN  

 06.84
88.76190074

10003500
max 


 cc y

I

M
  

          2/861.3 mmN  

Total tensile force = Average tensile stress x area of tensile zone 

         N359.254686094.135
2

245.6
  

16. A water main of 1000 mm internal diameter and 10 mm thickness is running full. If the 

bending stress is not to exceed 56 N/mm2, find the greatest span on which the pipe may be 

freely supported. Steel and water weigh 76800 N/m3 and 10000 N/m3 respectively. 

Solution: 

Internal diameter of the pipe, d = 1000 mm = 1 m 

External diameter of pipe, D = 1000 + 2 x 10 = 1020 mm = 1.02 m 

Consider 1 m length of the water main. 

Area of the pipe section,    2222 102.1
44




dDA  

    203173.0 m  
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Area of the water section, 22 1
44



dA  

  27854.0 mm  

Weight of one metre length of pipe = 0.03173 x 1 x 76800 = 2493.978 N 

Weight of water in one metre length of the pipe = 0.7854 x 1 x 10000 = 7854 N  

Total load on the pipe per metre run = 2493.978 + 7854 = 10347.978 N 

Let the maximum span of the pipe l m. 

Maximum bending moment, mNl
lwl

M .497.1293
8

978.10347

8

2
22

  

       mmNl .1000497.1293 2  

Moment of inertia of the pipe section about the neutral axis,  

       4444 10001020
6464




dDI  

      4610379.4046 mm  

We know,     
yI

M 
  

   
510

56

10379.4046

1000497.1293
6

2




 l
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       494.343
1000497.1293510

10379.404656 6
2 




l  

        ml 533.18  

 

 

 


